[Effect of membrane-effective drugs (anti-arrhythmia agents) on acoustically evoked brain-stem potentials]. 1984

T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand

Lidocaine, Mexiletine, Procainamide, and Phenytoin were administered intravenously to anaesthesized rabbits. BERA alterations showed two different patterns. If the intoxication dose was exceeded, amplitude depression, threshold elevation, desynchronization, and severe cumulative prolongation of all latencies and interpeak latencies appeared. Below this dose Lidocaine and Mexiletine induced a single, reversible, dose related, cumulative prolongation of all latencies and interpeak latencies. Procainamide induced counterrelated shiftings of interpeak latencies I-III and III-V, whereas Phenytoin showed no influence. One should, therefore, take into account these effects when BERA is used clinically, since otherwise serious errors can occur. On the other hand, there are diagnostic and therapeutic aspects for the tinnitus patient.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008801 Mexiletine Antiarrhythmic agent pharmacologically similar to LIDOCAINE. It may have some anticonvulsant properties. KO-1173,KO1173,KOE-1173,Mexiletene,Mexiletine Hydrochloride,Mexitil,Mexitil PL,Mexityl,Novo-Mexiletine,KO 1173,KOE 1173,KOE1173,Novo Mexiletine
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D011342 Procainamide A class Ia antiarrhythmic drug that is structurally-related to PROCAINE. Procaine Amide,Apo-Procainamide,Biocoryl,Novocainamide,Novocamid,Procainamide Hydrochloride,Procamide,Procan,Procan SR,Procanbid,Pronestyl,Rhythmin,Amide, Procaine,Hydrochloride, Procainamide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic
D001299 Audiometry The testing of the acuity of the sense of hearing to determine the thresholds of the lowest intensity levels at which an individual can hear a set of tones. The frequencies between 125 and 8000 Hz are used to test air conduction thresholds and the frequencies between 250 and 4000 Hz are used to test bone conduction thresholds. Audiometries
D001300 Audiometry, Evoked Response A form of electrophysiologic audiometry in which an analog computer is included in the circuit to average out ongoing or spontaneous brain wave activity. A characteristic pattern of response to a sound stimulus may then become evident. Evoked response audiometry is known also as electric response audiometry. Audiometry, Electroencephalic Response,Electrocochleography,Evoked Response Audiometry,Audiometries, Electroencephalic Response,Audiometries, Evoked Response,Electrocochleographies,Electroencephalic Response Audiometries,Electroencephalic Response Audiometry,Evoked Response Audiometries,Response Audiometries, Electroencephalic,Response Audiometries, Evoked,Response Audiometry, Electroencephalic,Response Audiometry, Evoked

Related Publications

T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1985, Padiatrie und Grenzgebiete,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
February 1990, Psychiatrie, Neurologie, und medizinische Psychologie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
June 1986, Psychiatrie, Neurologie, und medizinische Psychologie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
November 1989, Psychiatrie, Neurologie, und medizinische Psychologie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1993, Klinische Padiatrie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1971, Monatsschrift fur Ohrenheilkunde und Laryngo-Rhinologie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1972, Archiv fur klinische und experimentelle Ohren- Nasen- und Kehlkopfheilkunde,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1988, Klinische Padiatrie,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1977, Zhurnal eksperimental'noi i klinicheskoi meditsiny,
T Lenarz, and J Gülzow, and H J Hönerloh, and H Hildenbrand
January 1970, Acta biologica et medica Germanica,
Copied contents to your clipboard!