Requirements for the solubilization of immune aggregates by complement. The role of the classical pathway. 1978

M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig

In this paper we examine the role of the classical pathway in the complement-mediated solubilization of immune precipitates (CRA). Serum reagents were depleted of the alternative pathway components properdin and factor D. Both depleted reagents lack CRA although they have almost intact hemolytic activity. Also, immune complexes were not solubilized when incubated with high concentrations of the classical pathway components (C1, C4, C2, and C3. We conclude that CRA is not mediated by the classical pathway alone. Activation of the classical pathway by the immune aggregates greatly enhances CRA. The effect of the classical pathway is to deposit C3b on the antigen-antibody lattice and promote the assembly of a lattice-associated, properdin-dependent C3-convertase. Although C3, C4, and properdin were detected on complexes solubilized by serum in the presence of Ca++ and Mg++, only C3 and properdin were found on the complexes when Ca++ had been chelated by ethylene glycol-bis-(beta-aminoethyl ether), N,N'-tetraacetic acid. In both situations the aggregates were capable of converting C5 in the fluid phase. However, no C5 was found on the solubilized complexes. These findings suggest that in contrast to nascent C3b and C4b, nascent C5-9 lacks binding affinity for immune aggregates.

UI MeSH Term Description Entries
D011414 Properdin A 53-kDa protein that is a positive regulator of the alternate pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It stabilizes the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) and protects it from rapid inactivation, thus facilitating the cascade of COMPLEMENT ACTIVATION and the formation of MEMBRANE ATTACK COMPLEX. Individuals with mutation in the PFC gene exhibit properdin deficiency and have a high susceptibility to infections. Complement Factor P,Factor P, Complement
D011416 Complement Factor D A serum protein which is important in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. This enzyme cleaves the COMPLEMENT C3B-bound COMPLEMENT FACTOR B to form C3bBb which is ALTERNATIVE PATHWAY C3 CONVERTASE. Adipsin,C3 Convertase Activator,C3PA Convertase,Factor D,Properdin Factor D,28 kDa Protein, Adipocyte,C3 Proactivator Convertase,C3PAse,Complement Protein D,D Component of Complement,GBGase,Proactivator Convertase,Activator, C3 Convertase,Complement D Component,Convertase Activator, C3,Convertase, C3 Proactivator,Convertase, C3PA,Convertase, Proactivator,Factor D, Complement,Factor D, Properdin,Protein D, Complement
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
November 1984, Clinical and experimental immunology,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
July 1989, Behring Institute Mitteilungen,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
October 1976, Journal of immunology (Baltimore, Md. : 1950),
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
October 1983, Molecular immunology,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
January 1994, Allergologia et immunopathologia,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
June 1983, Immunology,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
February 1975, Proceedings of the National Academy of Sciences of the United States of America,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
January 1981, Journal of immunological methods,
M Takahashi, and S Takahashi, and V Brade, and V Nussenzweig
June 1982, Immunology today,
Copied contents to your clipboard!