Alveolar ventilation during high-frequency oscillation: core dead space concept. 1984

D Isabey, and A Harf, and H K Chang

To assess the role of direct alveolar ventilation during high-frequency ventilation, we studied convective gas mixing during high-frequency oscillation with tidal volumes close to the dead space volume in a simple physical model. A main conduit representing a large airway was connected with a rigid sphere (V = 77, 517, and 1,719 cm3) by a small circular tube (d = 0.3 and 0.5 cm; L = 5, 10, and 20 cm). The efficiency of sinusoidal oscillations (f = 5, 20, and 40 Hz) applied at one end of the main conduit was assessed from the washout of a CO2 mixture from the sphere; to flush CO2 from the main fluid line, a constant flow of air was used. The decay in CO2 concentration measured in the sphere was exponential and therefore characterized by a measured time constant (tau m). Taking the small tube volume as the ventilatory dead space (VD), an effective tidal volume (VT*) was computed from tau m and compared with the tidal volume (VT) obtained separately from the pressure variation in the sphere. The discrepancy between these two tidal volumes has been found to be uniquely dependent on the ratio VT/VD within the range of VT/VD studied (0.5-2.2). For VT/VD less than 1.2, VT* was larger than VT, indicating that the conventional concept of alveolar ventilation does not apply. From the partition of the oscillatory flow in the small tube into two regions, the core and the unsteady boundary layer, we theoretically computed the proportions of the sinusoidal flow (or tidal volume) and the dead space for each region.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010827 Physiology The biological science concerned with the life-supporting properties, functions, and processes of living organisms or their parts.
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D012126 Respiratory Dead Space That part of the RESPIRATORY TRACT or the air within the respiratory tract that does not exchange OXYGEN and CARBON DIOXIDE with pulmonary capillary blood. Dead Space, Respiratory,Dead Spaces, Respiratory,Respiratory Dead Spaces,Space, Respiratory Dead,Spaces, Respiratory Dead
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013990 Tidal Volume The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T. Tidal Volumes,Volume, Tidal,Volumes, Tidal
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

D Isabey, and A Harf, and H K Chang
March 1984, European journal of anaesthesiology,
D Isabey, and A Harf, and H K Chang
January 1982, Respiration physiology,
D Isabey, and A Harf, and H K Chang
December 1983, Lancet (London, England),
D Isabey, and A Harf, and H K Chang
September 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
D Isabey, and A Harf, and H K Chang
February 1986, Respiration physiology,
D Isabey, and A Harf, and H K Chang
January 1988, Polski tygodnik lekarski (Warsaw, Poland : 1960),
D Isabey, and A Harf, and H K Chang
January 1989, Acta anaesthesiologica Scandinavica. Supplementum,
D Isabey, and A Harf, and H K Chang
July 1988, Respiration physiology,
D Isabey, and A Harf, and H K Chang
January 1954, Acta clinica Belgica,
D Isabey, and A Harf, and H K Chang
January 1971, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!