Small angle x-ray study on the structure of active and inactive ribulose bisphosphate carboxylase from Alcaligenes eutrophus. Evidence for a configurational change. 1984

O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger

Two small angle x-ray scattering curves have been obtained from active and inactive ribulose 1,5-bisphosphate carboxylase from Alcaligenes eutrophus. The radius of gyration was calculated to be R = 47.8 +/- 0.1 nm for the active enzyme and R = 49.2 +/- 0.1 nm for the inactive enzyme. The maximum particle dimension amounts to 13.5 +/- 0.5 nm for the active and 15.7 +/- 0.5 nm for the inactive enzyme. A model of the active carboxylase is presented. It is in good agreement with models derived from electron microscopical data. Model calculations for the inactive enzyme show some evidence for a configurational change.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000421 Alcaligenes A genus of gram-negative, aerobic, motile bacteria that occur in water and soil. Some are common inhabitants of the intestinal tract of vertebrates. These bacteria occasionally cause opportunistic infections in humans.
D012273 Ribulose-Bisphosphate Carboxylase A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration. Carboxydismutase,Ribulose Biphosphate Carboxylase-Oxygenase,Ribulose Diphosphate Carboxylase,Ribulosebiphosphate Carboxylase,Rubisco,1,5-Biphosphate Carboxylase-Oxygenase,Ribulose Biphosphate Carboxylase,Ribulose Bisphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase-Oxygenase,Ribulose-1,5-Bisphosphate Carboxylase Small-Subunit,Ribulose-Bisphosphate Carboxylase Large Subunit,Ribulose-Bisphosphate Carboxylase Small Subunit,Rubisco Small Subunit,1,5 Biphosphate Carboxylase Oxygenase,Biphosphate Carboxylase-Oxygenase, Ribulose,Carboxylase Small-Subunit, Ribulose-1,5-Bisphosphate,Carboxylase, Ribulose Bisphosphate,Carboxylase, Ribulose Diphosphate,Carboxylase, Ribulose-1,5-Biphosphate,Carboxylase, Ribulose-Bisphosphate,Carboxylase, Ribulosebiphosphate,Carboxylase-Oxygenase, 1,5-Biphosphate,Carboxylase-Oxygenase, Ribulose Biphosphate,Carboxylase-Oxygenase, Ribulose-1,5-Biphosphate,Diphosphate Carboxylase, Ribulose,Ribulose 1,5 Biphosphate Carboxylase,Ribulose 1,5 Biphosphate Carboxylase Oxygenase,Ribulose 1,5 Bisphosphate Carboxylase Small Subunit,Ribulose Biphosphate Carboxylase Oxygenase,Ribulose Bisphosphate Carboxylase Large Subunit,Ribulose Bisphosphate Carboxylase Small Subunit,Small Subunit, Rubisco,Small-Subunit, Ribulose-1,5-Bisphosphate Carboxylase
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
February 1986, Biochemical Society transactions,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
July 1978, European journal of biochemistry,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
September 1985, The Journal of biological chemistry,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
October 1982, The Journal of biological chemistry,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
August 1995, Journal of bacteriology,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
October 1987, Journal of bacteriology,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
September 1984, Journal of bacteriology,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
January 1987, Nature,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
May 1980, European journal of biochemistry,
O Meisenberger, and I Pilz, and B Bowien, and G P Pal, and W Saenger
May 1984, Journal of molecular biology,
Copied contents to your clipboard!