Tin distribution in adult and neonatal rat brain following exposure to triethyltin. 1984

L L Cook, and K S Jacobs, and L W Reiter

The uptake, distribution, and elimination of tin were determined in adult and neonatal (Postnatal Day 5) rat brain following ip administration of triethyltin bromide (TET). Groups of five adult CD rats were killed at 10 min, 1 hr, 4 hr, 24 hr, 5 days, or 10 days following acute exposure to 6.0 mg/kg TET; an additional group of adult animals was killed at 24 hr following exposure to either 3.0, 6.0, or 9.0 mg/kg (N = 5/dosage). The time course for tin distribution in 5-day-old rat pups was determined by killing pups 10 min, 30 min, 1 hr, 4 hr, 8 hr, 12 hr, 24 hr, 5 days, 10 days, or 22 days following exposure to either 3.0 or 6.0 mg/kg TET (N = 4/dosage/time). Tin analyses were performed by flameless atomic absorption spectrophotometry. The t1/2 for total tin in the adult rat brain following 6.0 mg/kg TET was determined to be 8.0 days. The maximum concentration in the adult was reached at 24 hr and corresponded to 4.6, 9.6, and 16.6 ng tin/mg protein for dosages of 3.0, 6.0, and 9.0 mg/kg, respectively. Tin was evenly distributed across all brain areas studied. For animals exposed to 6.0 mg/kg TET on Postnatal Day 5, the t1/2 for total tin in the brain was 7.3 days. A maximum concentration of 9.9 ng tin/mg protein was reached at 8 hr postexposure. The rate of elimination of tin from the brain (as measured by the elimination rate constant kel) did not differ significantly between adults and neonates. However, due to a dilution effect by the rapid brain growth of the neonate, the concentration of tin in the neonatal brain following TET administration decreased significantly faster than that in the adult.

UI MeSH Term Description Entries
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014001 Tin A trace element that is required in bone formation. It has the atomic symbol Sn, atomic number 50, and atomic weight 118.71. Stannum
D014220 Trialkyltin Compounds Organometallic compounds which contain tin and three alkyl groups. Compounds, Trialkyltin
D014267 Triethyltin Compounds Organic compounds composed of tin and three ethyl groups. Affect mitochondrial metabolism and inhibit oxidative phosphorylation by acting directly on the energy conserving processes. Compounds, Triethyltin
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L L Cook, and K S Jacobs, and L W Reiter
November 1984, Toxicology and applied pharmacology,
L L Cook, and K S Jacobs, and L W Reiter
December 1981, Neurotoxicology,
L L Cook, and K S Jacobs, and L W Reiter
May 1984, Toxicology and applied pharmacology,
L L Cook, and K S Jacobs, and L W Reiter
April 1983, Journal of the neurological sciences,
L L Cook, and K S Jacobs, and L W Reiter
July 1969, Journal of neuropathology and experimental neurology,
L L Cook, and K S Jacobs, and L W Reiter
September 2005, The International journal of neuroscience,
L L Cook, and K S Jacobs, and L W Reiter
January 2010, Environmental toxicology and pharmacology,
L L Cook, and K S Jacobs, and L W Reiter
January 1988, The Journal of pharmacology and experimental therapeutics,
L L Cook, and K S Jacobs, and L W Reiter
January 1991, Neurotoxicology and teratology,
Copied contents to your clipboard!