Rod-cone interaction in flicker perimetry. 1984

K R Alexander, and G A Fishman

We have assessed the influence of the rod system on cone flicker sensitivity during flicker perimetry. For temporal frequencies above 18 Hz extrafoveal cone-mediated flicker thresholds for a white test stimulus are as much as 1.5 log units lower when measured against a large background light that saturates the rods than when measured in darkness. Following a Ganzfeld bleach extrafoveal cone flicker thresholds are at their minimum once the cones have recovered their sensitivity, but then thresholds rise as the rods begin to recover from the bleach. Our results indicate that the flicker sensitivity of the extrafoveal cone system at high temporal frequencies is influenced by the rods surrounding the flickering test stimulus. The rods reduce flicker sensitivity maximally in the dark adapted state, and their suppressive influence is minimised only by strong rod bleaches or by large backgrounds that saturate the rod system.

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D058609 Visual Field Tests Method of measuring and mapping the scope of vision, from central to peripheral of each eye. Automated Perimetry Exam,Campimetry,Perimetry,Tangent Screen Exam,Visual Field Exam,Automated Perimetry Exams,Campimetries,Exam, Automated Perimetry,Exam, Tangent Screen,Exam, Visual Field,Exams, Automated Perimetry,Exams, Tangent Screen,Exams, Visual Field,Field Exam, Visual,Field Exams, Visual,Field Test, Visual,Field Tests, Visual,Perimetries,Perimetry Exam, Automated,Perimetry Exams, Automated,Screen Exam, Tangent,Screen Exams, Tangent,Tangent Screen Exams,Test, Visual Field,Tests, Visual Field,Visual Field Exams,Visual Field Test

Related Publications

K R Alexander, and G A Fishman
January 1984, Vision research,
K R Alexander, and G A Fishman
January 1986, Vision research,
K R Alexander, and G A Fishman
January 1986, Vision research,
K R Alexander, and G A Fishman
March 2006, Vision research,
K R Alexander, and G A Fishman
April 1954, The British journal of physiological optics,
K R Alexander, and G A Fishman
December 1974, Vision research,
K R Alexander, and G A Fishman
January 1986, Vision research,
K R Alexander, and G A Fishman
February 2012, Journal of the Optical Society of America. A, Optics, image science, and vision,
K R Alexander, and G A Fishman
January 1989, Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
K R Alexander, and G A Fishman
February 2013, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
Copied contents to your clipboard!