Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. 1978

Y Frégnac, and M Imbert

1. 535 units were recorded in the primary visual cortex in twelve normally reared and fifteen dark-reared kittens aged between 8 and 50 days. These results were pooled with a previous study of 582 units recorded from thirty-five kittens reared in similar conditions. 2. These 1117 cells were classified into four functional classes of neurones: (a) visually unresponsive cells, (b) non-specific cells which were sensitive to spots or slits of light moving in any direction, (c) immature cells which were preferentially activated by a rectilinear stimulus but unselective regarding its precise orientation and (d) specific cells that appeared to be as selective for orientation as the simple or complex cells in the adult cat. 3. The results confirm that cells having the same orientation-specific response properties as adult cortical visual neurones are present in the earliest stages of post-natal development, independently of visual experience. However, to maintain and develop these specific cells after the third week of post-natal life, visual experience is necessary. 4. The ocular dominance of visual cells is not constant from the earliest stages of development. A significant increase in binocularly driven neurones occurs with age. 5. Before 3 weeks of age, whatever the rearing conditions, there are more specific cells coding horizontal and vertical orientations than those coding oblique orientations. These 'horizontal and vertical detectors' are preferentially driven by the contralateral eye. 5. After 4 weeks of age, specific neurones are found at all orientations in normally reared kittens. At this stage of development the ocular dominance is independent of orientation preference, of the functional class of neurones considered and of the rearing conditions. The proportion of binocularly driven cells is slightly below adult standard. 7. A hypothesis of differential plasticity is proposed: contralateral, monocular 'horizontal and vertical detectors' are supposed to be stable; they would remain so until they become binocular. Binocular cells, for which competition between two inputs occurs, are the labile units which can be despecified or specified under the control of visual experience.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

Y Frégnac, and M Imbert
February 1976, The Journal of physiology,
Y Frégnac, and M Imbert
April 1976, Nature,
Y Frégnac, and M Imbert
January 1988, Experimental brain research,
Y Frégnac, and M Imbert
January 1987, Experimental brain research,
Copied contents to your clipboard!