Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin. 1984

A J Pande, and R H Callender, and T G Ebrey, and M Tsuda

We report here the first resonance Raman results of octopus hypsorhodopsin, a species formed photochemically at very low temperatures from visual pigments. A pump-probe technique was used to obtain Raman spectra from samples at 12 degrees K whose photostationary state mixtures were either hypsorhodopsin rich or hysorhodopsin poor. The data strongly suggest that the Schiff-base linkage between the chromophore of hysorhodopsin and apoprotein is protonated. Further, the results suggest that hypsorhodopsin's chromophore is in some torsionally distorted conformation, possibly having torsional departures from an all-trans isomeric form.

UI MeSH Term Description Entries
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D002856 Chromatophores The large pigment cells of fish, amphibia, reptiles and many invertebrates which actively disperse and aggregate their pigment granules. These cells include MELANOPHORES, erythrophores, xanthophores, leucophores and iridiophores. (In algae, chromatophores refer to CHLOROPLASTS. In phototrophic bacteria chromatophores refer to membranous organelles (BACTERIAL CHROMATOPHORES).) Chromatophore
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D012545 Schiff Bases Condensation products of aromatic amines and aldehydes forming azomethines substituted on the N atom, containing the general formula R-N:CHR. (From Grant & Hackh's Chemical Dictionary, 5th ed) Schiff Base,Base, Schiff,Bases, Schiff
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman
D049831 Octopodiformes A superorder in the class CEPHALOPODA, consisting of the orders Octopoda (octopus) with over 200 species and Vampyromorpha with a single species. The latter is a phylogenetic relic but holds the key to the origins of Octopoda. Octopoda,Octopus,Octopuses,Octopodas,Octopodiforme,Octopuse

Related Publications

A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
October 1978, Biochemistry,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
October 1987, Biophysical journal,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
January 1977, Annual review of biophysics and bioengineering,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
January 1980, Biophysical journal,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
December 1979, Journal francais d'ophtalmologie,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
April 1969, Experimental eye research,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
June 1997, Biochemistry,
A J Pande, and R H Callender, and T G Ebrey, and M Tsuda
August 1980, Photochemistry and photobiology,
Copied contents to your clipboard!