Glucose phosphoenolpyruvate-dependent phosphotransferase system of Streptococcus mutans GS5 studied by using cell-free extracts. 1984

E S Liberman, and A S Bleiweis

The glucose phosphotransferase system (PTS) of Streptococcus mutans GS5 has been partially characterized, using fractions derived from cells treated with the muramidase mutanolysin. Membranes retained functional PTS enzymes for the phosphoenolpyruvate-dependent phosphorylation of glucose, fructose, and mannose. This was confirmed by assaying membranes directly for enzyme I (EI) and enzyme IIglc (EIIglc) by employing specific phosphoryl-exchange reactions for each factor. Membranes prepared from glucose PTS- mutants, however, were either deficient in glucose phosphorylation or reflected the "leakiness" displayed by whole cells. Mutant membranes were unable to catalyze the glucose:glucose 6-phosphate transphosphorylation reaction, indicating a defective EIIglc in these fractions. Although total cellular EI activities in the mutant clones were about the same as that measured for the wild-type strain by employing the pyruvate:phosphoenolpyruvate phosphoryl-exchange reaction, mutant membranes were found to possess less than 10% of the specific EI activity of wild-type membranes. The cytoplasmic fractions of mutants, however, displayed markedly increased specific activities for this enzyme when compared with wild-type extracts. These results strongly suggest a molecular association of EI with a normal membrane protein, perhaps EIIglc, that is absent in mutants. This would explain the absence of fructose PTS activity in glucose PTS- mutant membranes despite the fact that whole cells of these clones are normal for this transport function.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

E S Liberman, and A S Bleiweis
August 1980, Scandinavian journal of dental research,
E S Liberman, and A S Bleiweis
February 1982, Journal of bacteriology,
Copied contents to your clipboard!