Effects of amphotericin b on the electrical properties of Necturus gallbladder: intracellular microelectrode studies. 1978

L Reuss

Intracellular microelectrode techniques were employed to study the mechanism by which amphotericin B induces a transient mucosa-negative transepithelial potential (deltaVms) in the gallbladder of Necturus. When the tissue was incubated in standard Na-Ringer's solution, the antibiotic reduced the apical membrane potential by about 40 mV, and the basolateral membrane potential by about 35 mV, whereas the transepithelial potential increased by about 5 mV. The electrical resistance of the apical membrane fell by 83%, and that of the basolateral membrane by 40%; the paracellular resistance remained unchanged. Circuit analysis indicated that the equivalent electromotive forces of the apical and basolateral membranes fell by 35 and 11 mV, respectively. Changes in potentials and resistances produced by ionic substitutions in the mucosal bathing medium showed that amphotericin B produces a nonselective increase in apical membrane small monovalent cation conductance (K, Na, Li). In the presence of Na-Ringer's on the mucosal side, this resulted in a reduction of the K permselectivity of the membrane, and thus in a fall of its equivalent emf. During short term exposure to amphotericin B, PNa/PCl across the paracellular pathway did not change significantly, whereas PK/PNa doubled. These results indicate that deltaVms is due to an increase of gNa across the luminal membranes of the epithelial cells (Cremaschi et al., 1977. J. Membrane Biol. 34:55); the data do not support the alternative hypothesis (Rose & Nahrwold, 1976. J. Membrane Biol 29:1) that deltaVms results from a reduction in shunt PNa/PCl acting in combination with a rheogenic basolateral Na pump.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
Copied contents to your clipboard!