Induction of amino acid transport by L-triiodothyronine in cultured growth hormone-producing rat pituitary tumor cells (GC cells). 1984

M I Surks, and E C Fels, and C R DeFesi

The action of L-triiodothyronine (T3) on amino acid transport in the GC clonal strain of rat pituitary cells was investigated by measurement of the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). The uptake of AIB by GC cells appeared to require energy and Na+ and displayed Michaelis-Menten kinetics. In comparison to cultures maintained in the absence of T3, T3 addition resulted in an increase in AIB uptake which seemed due to an increase in the initial rate of AIB transport. T3 addition resulted in increased AIB accumulation at later time points as well. T3 induction of AIB transport did not occur until 3.5 h after addition of T3, and this effect was blocked by cycloheximide. Maximal induction occurred 48 to 72 h later. One-half maximal induction occurred 24 to 48 h after addition of T3. No detectable changes either in AIB uptake or intracellular water space, measured by uptake of the nonmetabolizable sugar, 3-O-methyl-D-glucose, were noted for the first 120 min after addition of T3. Induction of AIB transport occurred at 0.05 nM T3 (total medium concentration) and one-half maximal induction occurred at 0.17 nM T3. The relative potencies of four iodothyronine analogues for AIB transport were in accord with their reported activities in nuclear T3 receptor binding assays. These data suggest that induction of AIB transport by T3 may be mediated by the nuclear T3 receptor and may reflect the pleiotrophic response of GC cells to thyroid hormone.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008757 Methylglucosides Methylglucopyranosides
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000621 Aminoisobutyric Acids A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid. Acids, Aminoisobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

M I Surks, and E C Fels, and C R DeFesi
September 2020, Molecular and cellular endocrinology,
M I Surks, and E C Fels, and C R DeFesi
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
M I Surks, and E C Fels, and C R DeFesi
April 1965, Life sciences (1962),
M I Surks, and E C Fels, and C R DeFesi
February 2000, The Journal of nutrition,
M I Surks, and E C Fels, and C R DeFesi
January 1977, Endocrinology,
M I Surks, and E C Fels, and C R DeFesi
June 1974, Lloydia,
M I Surks, and E C Fels, and C R DeFesi
August 1985, Endocrinology,
Copied contents to your clipboard!