Effect of cholinergic and adrenergic stimulation of the subfornical organ on water intake. 1984

J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad

Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78 +/- 0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing effect in 50% of the animals studied (1.06 +/- 0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into the SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004327 Drinking Behavior Behaviors associated with the ingesting of water and other liquids; includes rhythmic patterns of drinking (time intervals - onset and duration), frequency and satiety. Behavior, Drinking,Behaviors, Drinking,Drinking Behaviors

Related Publications

J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
July 1986, European journal of pharmacology,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
October 1983, European journal of pharmacology,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
January 1979, Acta physiologica latino americana,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
December 1974, Canadian journal of physiology and pharmacology,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
February 1987, The American journal of physiology,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
November 1987, The American journal of physiology,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
May 1969, Annals of the New York Academy of Sciences,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
January 1995, Brain research bulletin,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
December 2001, Brain research,
J V Menani, and W A Saad, and L A Camargo, and J Antunes-Rodrigues, and M R Covian, and W A Saad
October 2007, Regulatory peptides,
Copied contents to your clipboard!