High-resolution 23Na-NMR studies of human erythrocytes: use of aqueous shift reagents. 1984

M M Pike, and E T Fossel, and T W Smith, and C S Springer

Aqueous shift reagents were used to clearly distinguish intra-and extracellular 23Na-nuclear magnetic resonance (NMR) signals in samples consisting of whole blood or suspensions of washed human erythrocytes (both fresh and outdated). The lanthanide chelates Dy(PPP)2(7-) and Tm( TTHA )3- were used to shift the extracellular signals upfield, and Dy( TTHA )3- and Tm(PPP)2(7-) were similarly used to shift extracellular resonances downfield. The absolute intensities of the signals were used along with the measured hematocrit to simultaneously determine the intra- and extracellular Na+ concentrations. The results were generally within 5% of the values determined by more time-consuming centrifugation-flame emission photometry measurements on the same samples. Thus the 23Na-NMR signals from both intra- and extracellular cations suffer no NMR invisibility within experimental error. The lower level of intracellular Na+ in fresh erythrocytes (less than 12 mM) is easily distinguished from the higher level (approximately 30 mM) in erythrocytes that have been stored (in the cold) outside the body for some weeks.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001800 Blood Specimen Collection The taking of a blood sample to determine its character as a whole, to identify levels of its component cells, chemicals, gases, or other constituents, to perform pathological examination, etc. Blood Specimen Collections,Collection, Blood Specimen,Collections, Blood Specimen,Specimen Collection, Blood,Specimen Collections, Blood
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M M Pike, and E T Fossel, and T W Smith, and C S Springer
February 1982, Proceedings of the National Academy of Sciences of the United States of America,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
January 1993, NMR in biomedicine,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
January 1992, Biochimie,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
August 1999, NMR in biomedicine,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
December 1989, Investigative radiology,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
September 1989, Scanning microscopy,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
July 1989, NMR in biomedicine,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
April 1980, Biochimica et biophysica acta,
M M Pike, and E T Fossel, and T W Smith, and C S Springer
January 2016, PloS one,
Copied contents to your clipboard!