Phase resetting of the rhythmic activity of embryonic heart cell aggregates. Experiment and theory. 1984

J R Clay, and M R Guevara, and A Shrier

Injection of a current pulse of brief duration into an aggregate of spontaneously beating chick embryonic heart cells resets the phase of the activity by either advancing or delaying the time of occurrence of the spontaneous beat subsequent to current injection. This effect depends upon the polarity, amplitude, and duration of the current pulse, as well as on the time of injection of the pulse. The transition from prolongation to shortening of the interbeat interval appears experimentally to be discontinuous for some stimulus conditions. These observations are analyzed by numerical investigation of a model of the ionic currents that underlie spontaneous activity in these preparations. The model consists of: Ix, which underlies the repolarization phase of the action potential, IK2, a time-dependent potassium ion pacemaker current, Ibg, a background or time-independent current, and INa, an inward sodium ion current that underlies the upstroke of the action potential. The steady state amplitude of the sum of these currents is an N-shaped function of potential. Slight shifts in the position of this current-voltage relation along the current axis can produce either one, two, or three intersections with the voltage axis. The number of these equilibrium points and the voltage dependence of INa contribute to apparent discontinuities of phase resetting. A current-voltage relation with three equilibrium points has a saddle point in the pacemaker voltage range. Certain combinations of current-pulse parameters and timing of injection can shift the state point near this saddle point and lead to an interbeat interval that is unbounded . Activation of INa is steeply voltage dependent. This results in apparently discontinuous phase resetting behavior for sufficiently large pulse amplitudes regardless of the number of equilibrium points. However, phase resetting is fundamentally a continuous function of the time of pulse injection for these conditions. These results demonstrate the ionic basis of phase resetting and provide a framework for topological analysis of this phenomenon in chick embryonic heart cell aggregates.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J R Clay, and M R Guevara, and A Shrier
September 1990, Biophysical journal,
J R Clay, and M R Guevara, and A Shrier
December 1986, The American journal of physiology,
J R Clay, and M R Guevara, and A Shrier
September 1990, Biophysical journal,
J R Clay, and M R Guevara, and A Shrier
June 1978, Federation proceedings,
J R Clay, and M R Guevara, and A Shrier
September 1995, The American journal of physiology,
J R Clay, and M R Guevara, and A Shrier
January 1975, Pflugers Archiv : European journal of physiology,
J R Clay, and M R Guevara, and A Shrier
January 1975, Pflugers Archiv : European journal of physiology,
J R Clay, and M R Guevara, and A Shrier
July 1990, Journal of theoretical biology,
J R Clay, and M R Guevara, and A Shrier
February 1979, The Journal of general physiology,
J R Clay, and M R Guevara, and A Shrier
November 1981, The Journal of physiology,
Copied contents to your clipboard!