Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma. 1984

S A Morrison, and J Jesty

Recent investigations have suggested that the activation of factor IX by factor VII/tissue factor may be an important alternative route to the generation of factor Xa. Accordingly, we have compared the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and have studied the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa, suggesting a feedback role for this enzyme, but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and (to a much smaller extent) factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. Variation of the factor IX or factor X concentrations permitted kinetic parameters for each activation to be derived. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005164 Factor IX Storage-stable blood coagulation factor acting in the intrinsic pathway of blood coagulation. Its activated form, IXa, forms a complex with factor VIII and calcium on platelet factor 3 to activate factor X to Xa. Deficiency of factor IX results in HEMOPHILIA B (Christmas Disease). Autoprothrombin II,Christmas Factor,Coagulation Factor IX,Plasma Thromboplastin Component,Blood Coagulation Factor IX,Factor 9,Factor IX Complex,Factor IX Fraction,Factor Nine,Factor IX, Coagulation
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013925 Thromboplastin Constituent composed of protein and phospholipid that is widely distributed in many tissues. It serves as a cofactor with factor VIIa to activate factor X in the extrinsic pathway of blood coagulation. Antigens, CD142,CD142 Antigens,Coagulation Factor III,Factor III,Tissue Factor,Tissue Thromboplastin,Blood Coagulation Factor III,Coagulin,Glomerular Procoagulant Activity,Prothrombinase,Tissue Factor Procoagulant,Urothromboplastin,Activity, Glomerular Procoagulant,Factor III, Coagulation,Procoagulant Activity, Glomerular,Procoagulant, Tissue Factor,Thromboplastin, Tissue
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3

Related Publications

S A Morrison, and J Jesty
December 1979, The Journal of biological chemistry,
S A Morrison, and J Jesty
October 1982, Thrombosis and haemostasis,
S A Morrison, and J Jesty
January 1981, Annals of the New York Academy of Sciences,
S A Morrison, and J Jesty
November 1982, Blood,
S A Morrison, and J Jesty
June 1978, The Journal of clinical investigation,
S A Morrison, and J Jesty
March 1974, Chemico-biological interactions,
Copied contents to your clipboard!