Cytotoxic and biochemical effects of thymidine and 3-deazauridine on human tumor cells. 1984

A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin

Cytotoxicity and perturbations of the deoxyribonucleoside triphosphate pools caused by thymidine were studied in thymidine-sensitive and -resistant human tumor cells. Incubation with 1 mM thymidine reduced cell viability by more than 90% in the three sensitive cell lines (two melanomas and one adrenal carcinoma) and reduced the growth rate without decreasing the viability of resistant LO melanoma cells. Thymidine (1 mM) greatly increased the ratio of the deoxythymidine 5'-triphosphate to deoxycytidine 5'-triphosphate pools in the sensitive cells compared to LO cells and also caused larger relative increases in the pool sizes of deoxyguanosine 5'-triphosphate and deoxyadenosine 5'-triphosphate in the sensitive compared to the resistant cells. 3-Deazauridine, known to inhibit synthesis of deoxycytidine 5'-triphosphate and cytidine 5'-triphosphate in other cell lines, potentiated the cytotoxicity of thymidine for thymidine-sensitive BE melanoma and LO cells. In LO cells, 3-deazauridine (50 microM) decreased the intracellular pool of deoxycytidine 5'-triphosphate to the level obtained with 1 mM thymidine. Lower concentrations of deoxycytidine as compared to cytidine were required to protect BE and LO cells against the cytotoxicity of thymidine plus 3-deazauridine. Deoxycytidine also was more effective than was cytidine in preventing loss of cell viability after exposure to thymidine or to 3-deazauridine individually. In these human melanoma cells, ribonucleotide reductase may be a major site of action of thymidine, of 3-deazauridine, and of both drugs in combination. These results indicate that in human tumor cells the cytotoxic effect of thymidine correlates with greater perturbations of the pyrimidine deoxyribonucleoside 5'-triphosphate pools and that thymidine and 3-deazauridine, which independently reduce the intracellular levels of deoxycytidine 5'-triphosphate, act synergistically against human tumor cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000310 Adrenal Gland Neoplasms Tumors or cancer of the ADRENAL GLANDS. Adrenal Cancer,Adrenal Gland Cancer,Adrenal Neoplasm,Cancer of the Adrenal Gland,Neoplasms, Adrenal Gland,Adrenal Cancers,Adrenal Gland Cancers,Adrenal Gland Neoplasm,Adrenal Neoplasms,Cancer, Adrenal,Cancer, Adrenal Gland,Cancers, Adrenal,Cancers, Adrenal Gland,Neoplasm, Adrenal,Neoplasm, Adrenal Gland,Neoplasms, Adrenal
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine

Related Publications

A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
May 1985, Blood,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
October 1979, Cancer research,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
January 1984, Cancer research,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
October 1979, Cancer research,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
January 1986, Investigational new drugs,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
May 1963, Wiener klinische Wochenschrift,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
April 1972, Biochemical pharmacology,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
August 1975, Annals of the New York Academy of Sciences,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
January 1982, Nucleic acids symposium series,
A Lockshin, and J T Mendoza, and B C Giovanella, and J S Stehlin
December 1979, The Australian journal of experimental biology and medical science,
Copied contents to your clipboard!