Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. 1984

R R Mize, and L H Horner

The retinal terminals of the medial interlaminar nucleus (MIN) and ventral lateral geniculate nucleus ( VLG ) have been examined quantitatively to determine if there are morphological differences in their synaptic ultrastructure which reflect their distinctive physiologies . The cross-sectional area and density (number per unit area) of synaptic contact zones with conventional and presynaptic dendrites (F2 profiles) were measured for each retinal terminal. The densities of F2 presynaptic dendrites and F1 flattened vesicle axon terminals were also measured. Retinal terminals in MIN were often large (mean size = 2.7 micron2 area) and had a high density of synaptic contacts (0.14 per micron surface area) with conventional dendrites, presynaptic dendrites, and dendritic spines. A high density of F2 presynaptic dendrites (0.08 per micron2 area) was found in MIN. F1 axon terminals were also found frequently (0.04 per micron2). MIN retinal terminals were often organized in glomeruli like those of the dorsal lateral geniculate nucleus. The retinal terminals in VLG were almost always small (mean size = 0.94 micron2 area), although they also had a high density of synaptic contacts (0.17 per micron surface area). They frequently synapsed on small dendrites and dendritic spines and less frequently on large dendrites. Unlike MIN, retinal terminals in VLG rarely contacted F2 presynaptic dendrites which were much less frequent in VLG (0.01 per micron2 area). Like MIN, VLG contained numerous F1 axon terminals (0.06 per micron2 area). No typical retinal glomeruli were found in VLG . These results show that MIN, which contains many Y cells, has a population of large retinal terminals and many F2 presynaptic dendrites. VLG , which apparently has only W cells, contains only small retinal terminals and has fewer F2 presynaptic dendrites. Both have a high density of F1 flat vesicle axon terminals.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

R R Mize, and L H Horner
January 1985, Journal of neurophysiology,
R R Mize, and L H Horner
June 2004, The Journal of comparative neurology,
R R Mize, and L H Horner
February 1975, Brain research,
R R Mize, and L H Horner
December 1999, The Journal of comparative neurology,
R R Mize, and L H Horner
April 2019, The European journal of neuroscience,
R R Mize, and L H Horner
August 1987, Fukuoka igaku zasshi = Hukuoka acta medica,
R R Mize, and L H Horner
June 1970, Brain research,
R R Mize, and L H Horner
September 1985, Brain research,
Copied contents to your clipboard!