Hydrogen ion maintenance improves the chemotaxis of stored granulocytes. 1984

T A Lane, and G E Lamkin

Through technological advances in granulocyte collection, it has become possible to collect neutrophils (PMNs) routinely in high concentration (greater than 5 X 10(7) PMN/ml) for transfusion. Previous studies in this laboratory suggested that storage of neutrophils for transfusion at high PMN concentrations resulted in impaired adenosine triphosphate (ATP) and hydrogen ion maintenance. The studies we report here were designed to assess the effect of PMN storage at concentrations which are usual (2 X 10(7) PMN/ml), intermediate (5 X 10(7) PMN/ml), and high (8 X 10(7) PMN/ml) on chemotactic responses, and to identify variables which are easily measured and might predict the chemotactic function of stored PMNs. Granulocyte concentrates were stored in plastic bags at 2,5, and 8 X 10(7) PMN per ml, with or without 15 mM bicarbonate (HCO3). The random migration (RM) chemotaxis (CTX), ATP, and relative cell size (VOL) of the fresh and stored cells and the pH, glucose, and lactate concentrations in the supernatant medium were measured in the freshly prepared units after 24 and 48 hours storage at room temperature. We found that RM, CTX, ATP, glucose, and pH decreased significantly (p less than .02) following storage for 24 and 48 hours, particularly in units stored at the higher cell concentrations. Cell volume and lactate increased significantly with storage for 24 and 48 hours, and these values were also greater in units stored at the higher cell concentration (p less than .02).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D001793 Blood Preservation The process by which blood or its components are kept viable outside of the organism from which they are derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Blood Preservations,Preservation, Blood,Preservations, Blood
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

T A Lane, and G E Lamkin
July 1953, The Journal of pathology and bacteriology,
T A Lane, and G E Lamkin
August 1974, Anaesthesia and intensive care,
T A Lane, and G E Lamkin
June 1986, Blood,
T A Lane, and G E Lamkin
June 1987, Revista clinica espanola,
T A Lane, and G E Lamkin
January 1970, Radiobiologiia,
T A Lane, and G E Lamkin
January 1983, Transfusion,
T A Lane, and G E Lamkin
March 1983, Polskie Archiwum Medycyny Wewnetrznej,
T A Lane, and G E Lamkin
May 1990, Minerva anestesiologica,
T A Lane, and G E Lamkin
August 1988, Investigative radiology,
T A Lane, and G E Lamkin
March 1983, Parasite immunology,
Copied contents to your clipboard!