Lectin-coated agarose beads in the investigation of sperm capacitation in the hamster. 1984

K K Ahuja

Sperm surface changes during in vitro capacitation were examined with the help of an assay system using lectin-coated agarose beads. The nature and intensity of binding of epididymal spermatozoa to beads depended entirely on the particular stage of capacitation and the type of lectin attached to the bead surface. Fresh epididymal spermatozoa bound readily to beads coated with Con A, LCA, WGA, and PNA, but not with seven other lectins. During capacitation there was a constant decline in sperm binding to beads, and spermatozoa cultured for 4-5 hr bound only to those coated with Con A. A dramatic increase in sperm binding to Con A-coated agarose beads occurred between 4.5 and 5 hr, when large numbers of hyperactivated spermatozoa adhered, predominantly through their flagellae, to form large clumps on the beads. The clumping of spermatozoa on Con A-coated beads was enhanced in the presence of stimulators of capacitation (i.e., taurine, hypotaurine, and phosphodiesterase inhibitors) and was suppressed in the presence of various metabolic inhibitors (i.e., sodium azide and local anesthetics). The implications of these results are that the carbohydrate components of the entire surface of spermatozoa undergo striking changes during capacitation, and a close relationship may exist between the sperm surface and the metabolic changes occurring within capacitating spermatozoa. Sperm-bead binding assays are clearly able to recognize surface changes in asynchronous populations of motile spermatozoa and, due to their simplicity and speed, should prove to be valuable in gaining a greater understanding of the biochemistry of sperm capacitation.

UI MeSH Term Description Entries
D008297 Male Males
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012685 Sepharose Agarose,Sepharose 4B,Sepharose C1 4B,4B, Sepharose C1,C1 4B, Sepharose
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations

Related Publications

K K Ahuja
December 1994, Biology of reproduction,
K K Ahuja
November 1973, Biology of reproduction,
K K Ahuja
July 2016, Nature reviews. Urology,
K K Ahuja
November 2006, Reproductive toxicology (Elmsford, N.Y.),
K K Ahuja
February 1973, Biochemical and biophysical research communications,
K K Ahuja
January 1997, Archives of andrology,
K K Ahuja
October 1979, Experimental cell research,
Copied contents to your clipboard!