Structural studies of glycerinated skeletal muscle. I. A-band length and cross-bridge period in ATP-contracted fibers. 1984

P Dreizen, and L Herman, and J E Berger

An electron microscope study is reported of structural changes during ATP-induced contraction of glycerinated rabbit psoas. In the absence of ATP, A-band length is constant at sarcomere lengths above 1.9 micron, with average length of 1.54 mu. In ATP-treated fibers, A-band length is also constant at sarcomere lengths above 2.0 microns, but the apparent length of A-band decreases to approximately 1.3 micron, as sarcomere length decreases from 1.9 micron to 1.5 mu. The occurrence of short A-bands cannot be attributed to crumpling of thick filaments against Z-lines, since I-bands remain patent; nor to the presence of heterogeneous filaments, since resting muscle does not show comparable heterogeneity, nor to compressive artifacts, which are minor when knife edge is oriented parallel with fiber axis during microtomy . The decrease of A-band length appears related, at least in part, to disarray of terminal cross-bridges as the thick filaments encroach upon the N-line, a structure which becomes evident within the I-band during contraction of glycerinated fibers. In preliminary studies, optical transforms of A-bands from individual sarcomeres reveal a characteristic myosin layer-line pattern as low as 1.5 micron sarcomere length. A cross-bridge repeat of 143 A is obtained for sarcomeres above 1.6 micron length; however, an appreciable proportion of sarcomeres in the range from 1.5 micron to 1.9 mu length generate meridional reflections less than 143 A, and as low as 130 A.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Dreizen, and L Herman, and J E Berger
March 1979, Biochemistry,
P Dreizen, and L Herman, and J E Berger
December 1983, Proceedings of the National Academy of Sciences of the United States of America,
P Dreizen, and L Herman, and J E Berger
January 1974, Tsitologiia,
P Dreizen, and L Herman, and J E Berger
October 1997, The Japanese journal of physiology,
P Dreizen, and L Herman, and J E Berger
August 1969, Biochemistry,
P Dreizen, and L Herman, and J E Berger
August 1976, Biochimica et biophysica acta,
P Dreizen, and L Herman, and J E Berger
November 1977, Biochimica et biophysica acta,
P Dreizen, and L Herman, and J E Berger
November 1979, Biophysical journal,
P Dreizen, and L Herman, and J E Berger
December 1989, General physiology and biophysics,
Copied contents to your clipboard!