Image analysis of the complex of actin-tropomyosin and myosin subfragment 1. 1984

T Wakabayashi, and C Toyoshima, and E Katayama

A three-dimensional image of the "rigor" complex of actin-tropomyosin-S1 was reconstituted from both low dose (10 electrons/A2) and high dose (greater than 500 electrons/A2) electron microscopic images of specimens embedded in unbroken and unbacked stain sheets of uranyl acetate over the holes of perforated carbon films. Myosin S1 shows multi-domain submolecular structure as has been earlier observed in actin-S1 ( Wakabayshi & Toyoshima, 1981) and actin-heavy meromyosin ( Katayama & Wakabayashi , 1981). The morphological unit of the actin-tropomyosin-S1 was found to be composed of at least three domains (domains A, B and D) and three regions (C, E and H). A myosin S1 molecule has a complex shape, which cannot be represented by a simple rod with one major axis. The shape of S1 should be approximated by at least two rods. The domain D is identified as the main part of S1. The angle between the major axis of this domain and the axis of actin helix was about 72 degrees, which is almost right angle. The angle between the axis of actin helix and major axis of the region E, which is less bulky than the domain D and makes no contact with actin, is much smaller than the value for the domain D. The resolution of reconstituted images from both high and low dose micrographs was improved so that the radial resolution became about 15 A and the axial one became about 25 A.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

T Wakabayashi, and C Toyoshima, and E Katayama
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
T Wakabayashi, and C Toyoshima, and E Katayama
June 1991, Biochemistry,
T Wakabayashi, and C Toyoshima, and E Katayama
December 1982, Biochimica et biophysica acta,
T Wakabayashi, and C Toyoshima, and E Katayama
March 1982, Biochemistry,
T Wakabayashi, and C Toyoshima, and E Katayama
February 1986, Biochemistry,
T Wakabayashi, and C Toyoshima, and E Katayama
June 1980, Proceedings of the National Academy of Sciences of the United States of America,
T Wakabayashi, and C Toyoshima, and E Katayama
October 1988, The Journal of biological chemistry,
T Wakabayashi, and C Toyoshima, and E Katayama
January 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!