Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. 1984

S E Mills, and D W Foster, and J D McGarry

The kinetics of carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) were examined in mitochondria from rat liver, heart and skeletal muscle as a function of pH over the range 6.8-7.6. In all three tissues raising the pH resulted in a fall in the Km for carnitine, no change in the Km for palmitoyl-CoA or Octanoyl-CoA, and a marked decrease in the inhibitory potency of malonyl-CoA. Studies with skeletal-muscle mitochondria established that increasing pH was accompanied by an increase in the Kd of the malonyl-CoA binding site for this ligand, coupled with a decrease in the Kd for fatty acyl-CoA species to compete for malonyl-CoA binding. Three principal conclusions are drawn. (1) The pH-induced shift in malonyl-CoA sensitivity of CPT I is not a phenomenon restricted to liver mitochondria. (2) At any given pH within the range tested, the ability of malonyl-CoA (and closely related compounds) to inhibit enzyme activity is governed by the efficiency of their binding to the malonyl-CoA site. (3) The competitive interaction between fatty acyl-CoA substrates and malonyl-CoA as regards CPT I activity is exerted at the malonyl-CoA binding site. Finally, the possibility is strengthened that the malonyl-CoA binding site is distinct from the active site of CPT I.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008316 Malonyl Coenzyme A A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems. Malonyl CoA,CoA, Malonyl,Coenzyme A, Malonyl
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002334 Carnitine O-Palmitoyltransferase An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21. Carnitine Palmitoyltransferase,CPT II,Carnitine Acyltransferase I,Carnitine Palmitoyltransferase I,Carnitine Palmitoyltransferase II,Palmitoylcarnitine Transferase,Palmitylcarnitine Acyltransferase,Acyltransferase I, Carnitine,Acyltransferase, Palmitylcarnitine,Carnitine O Palmitoyltransferase,II, Carnitine Palmitoyltransferase,O-Palmitoyltransferase, Carnitine,Palmitoyltransferase I, Carnitine,Palmitoyltransferase II, Carnitine,Palmitoyltransferase, Carnitine,Transferase, Palmitoylcarnitine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA

Related Publications

S E Mills, and D W Foster, and J D McGarry
May 1983, The Biochemical journal,
S E Mills, and D W Foster, and J D McGarry
July 1995, Biochimica et biophysica acta,
S E Mills, and D W Foster, and J D McGarry
July 2008, Archives of physiology and biochemistry,
S E Mills, and D W Foster, and J D McGarry
August 1995, Biochemical Society transactions,
S E Mills, and D W Foster, and J D McGarry
November 1984, The Journal of biological chemistry,
S E Mills, and D W Foster, and J D McGarry
August 1985, The Biochemical journal,
S E Mills, and D W Foster, and J D McGarry
July 1991, Biochemical and biophysical research communications,
S E Mills, and D W Foster, and J D McGarry
January 1985, Biochimica et biophysica acta,
Copied contents to your clipboard!