The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.). 1984

S Stymne, and A K Stobart

The synthesis of triacylglycerols was investigated in microsomes (microsomal fractions) prepared from the developing cotyledons of sunflower (Helianthus annuus). Particular emphasis was placed on the mechanisms involved in controlling the C18- unsaturated-fatty-acid content of the oils. We have demonstrated that the microsomes were capable of: the transfer of oleate from acyl-CoA to position 2 of sn-phosphatidylcholine for its subsequent desaturation and the return of the polyunsaturated products to the acyl-CoA pool by further acyl exchange; the acylation of sn-glycerol 3-phosphate with acyl-CoA to yield phosphatidic acid, which was further utilized in diacyl- and tri-acylglycerol synthesis; and (3) the equilibrium of a diacylglycerol pool with phosphatidylcholine. The acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine coupled to the equilibration of diacylglycerol and phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18 polyunsaturated fatty acids for triacylglycerol production. Similar reactions were found to operate in another oilseed plant, safflower (Carthamus tinctorius L.). On the other hand, the microsomes of avocado (Persea americana) mesocarp, which synthesize triacylglycerol via the Kennedy [(1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940] pathway, were deficient in acyl exchange and the diacylglycerol in equilibrium phosphatidylcholine interconversion. The results provide a working model that helps to explain the relationship between C18- unsaturated-fatty-acid synthesis and triacylglycerol production in oilseeds.

UI MeSH Term Description Entries
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium
D006368 Helianthus A genus herbs of the Asteraceae family. The SEEDS yield oil and are used as food and animal feed; the roots of Helianthus tuberosum (Jerusalem artichoke) are edible. Jerusalem Artichoke,Sunflower,Helianthus annuus,Helianthus tuberosus,Artichoke, Jerusalem,Sunflowers
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D019301 Oleic Acid An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed) 9-Octadecenoic Acid,Oleate,cis-9-Octadecenoic Acid,9 Octadecenoic Acid,cis 9 Octadecenoic Acid

Related Publications

S Stymne, and A K Stobart
January 2006, Methods in molecular biology (Clifton, N.J.),
S Stymne, and A K Stobart
January 2015, Methods in molecular biology (Clifton, N.J.),
S Stymne, and A K Stobart
October 1997, Archives of biochemistry and biophysics,
S Stymne, and A K Stobart
February 1996, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
S Stymne, and A K Stobart
January 2003, TSitologiia i genetika,
S Stymne, and A K Stobart
August 1996, The Biochemical journal,
Copied contents to your clipboard!