Rat liver retinyl palmitate hydrolase activity. Relationship to cholesteryl oleate and triolein hydrolase activities. 1984

W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman

Studies were conducted to explore relationships in rat liver between retinyl palmitate hydrolase activity and the hydrolytic activities against cholesteryl oleate and triolein. Previous studies have shown positive correlations between these three lipid ester hydrolase activities. In order to extend this work, the hydrolase activities were further purified and characterized. The activities against cholesteryl oleate and triolein resembled retinyl palmitate hydrolase activity in showing great variability from rat to rat as assayed in vitro. The relative levels of the three activities were highly correlated with each other over a 50-fold range of activity in a series of 66 liver homogenates. Partial purification (approx. 200-fold) in the absence of detergents was achieved by sequential chromatography of an acetone powder extract of liver on columns of phenyl-Sepharose, DEAE-Sepharose and heparin-Sepharose. The three hydrolase activities copurified during each of these chromatographic steps. The properties of the three copurifying activities were similar with regard to stimulation of activity by trihydroxy bile salts, pH optimum (near 8.0), and observance of Michaelis-Menten-type saturation kinetics. The three activities were different in their sensitivity towards the serine esterase inhibitors diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and in their solubility properties in 10 mM sodium acetate, pH 5.0. Thus, triolein hydrolase activity was much less sensitive than the other two activities to the two inhibitors. In addition, the activity against cholesteryl oleate could be separated from the other two activities by extraction of an acetone powder with acetate buffer, pH 5.0. These results indicate that the three lipid hydrolase activities are due to at least three different catalytically active centers, and at least two distinct and separable enzymes. It is likely that three separate but similar enzymes, that appear to be coordinately regulated, are involved.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D002787 Sterol Esterase An enzyme that catalyzes the hydrolysis of CHOLESTEROL ESTERS and some other sterol esters, to liberate cholesterol plus a fatty acid anion. Cholesterol Esterase,15-Ketosteryl Oleate Hydrolase,Acylcholesterol Lipase,Cholesterol Ester Hydrolase,Cholesteryl Oleate Hydrolase,Cholesterylester Hydrolase,Hormone-Sensitive Lipase,Lipase A (Lysosomal Acid Cholesterol Esterase),Lipoidal Steroid Esterase,Lysosomal Acid Cholesterol Esterase,Lysosomal Acid Lipase,Steroid Hormone Esterase,Sterol Ester Acylhydrolase,15 Ketosteryl Oleate Hydrolase,Acid Lipase, Lysosomal,Acylhydrolase, Sterol Ester,Esterase, Cholesterol,Esterase, Lipoidal Steroid,Esterase, Steroid Hormone,Esterase, Sterol,Hormone Sensitive Lipase,Hydrolase, 15-Ketosteryl Oleate,Hydrolase, Cholesterol Ester,Hydrolase, Cholesteryl Oleate,Hydrolase, Cholesterylester,Lipase, Acylcholesterol,Lipase, Hormone-Sensitive,Steroid Esterase, Lipoidal
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
September 1982, Nutrition reviews,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
May 1981, The Journal of biological chemistry,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
July 1984, Biochimica et biophysica acta,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
March 1992, The American journal of clinical nutrition,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
August 1979, Journal of lipid research,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
February 1971, The American journal of clinical nutrition,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
February 1986, Biochemical and biophysical research communications,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
August 1986, Biochimica et biophysica acta,
W S Blaner, and J H Prystowsky, and J E Smith, and D S Goodman
July 1985, The Journal of nutrition,
Copied contents to your clipboard!