The effect of glyceraldehyde on red cells. Haemoglobin status, oxidative metabolism and glycolysis. 1984

P J Thornalley, and A Stern

Glyceraldehyde induces changes in the flux of glucose oxidised through the hexose monophosphate pathway, the concentrations of intermediates in the Embden-Meyerhoff pathway, the oxidative status of haemoglobin and levels of reduced and oxidised pyridine nucleotides and glutathione in red cells. Glyceraldehyde autoxidises in the cellular incubations, consuming oxygen and producing glyoxalase I- and II-reactive materials. Major fates of glyceraldehyde in red cells appear to be: (i) adduct formation with reduced glutathione and cellular protein; (ii) autoxidation and reaction with oxyhaemoglobin and pyridine nucleotides, and (iii) phosphorylation of D-glyceraldehyde and entry into the glycolytic pathway as glyceraldehyde 3-phosphate. The production of glycerol from glyceraldehyde by red cell L-hexonate dehydrogenase appears not to be a major reaction of glyceraldehyde in red cells. These results indicate that high concentrations of glyceraldehyde (1-50 mM) may induce oxidative stress in red cells by virtue of the spontaneous autoxidation of glyceraldehyde, forming hydrogen peroxide and alpha-ketoaldehydes (glyoxalase substrates). The implications of glyceraldehyde-induced oxidative stress for the in vitro anti-sickling effect of DL-glyceraldehyde and for the polyol pathway metabolism of glyceraldehyde are discussed.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D007791 Lactoylglutathione Lyase An enzyme that catalyzes the interconversion of methylglyoxal and lactate, with glutathione serving as a coenzyme. EC 4.4.1.5. Glyoxalase I,Lactoyl Glutathione Lyase,Methylglyoxalase,Glutathione Lyase, Lactoyl,Lyase, Lactoyl Glutathione,Lyase, Lactoylglutathione
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

P J Thornalley, and A Stern
June 1967, Experientia,
P J Thornalley, and A Stern
November 2010, Leukemia & lymphoma,
P J Thornalley, and A Stern
February 1967, Biochemical pharmacology,
P J Thornalley, and A Stern
January 1977, Acta biologica et medica Germanica,
P J Thornalley, and A Stern
February 1938, The Biochemical journal,
P J Thornalley, and A Stern
January 1981, Acta biologica et medica Germanica,
P J Thornalley, and A Stern
November 1979, The American journal of physiology,
P J Thornalley, and A Stern
November 1991, Biochimica et biophysica acta,
Copied contents to your clipboard!