Tumorigenicity of human HT1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency. 1984

W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge

The tumorigenic capacity of hybrids formed by fusion of the highly tumorigenic HT1080 human fibrosarcoma cell line with nontumorigenic normal fibroblasts was examined. The HT1080 also contains an activated N-ras oncogene. Near-tetraploid hybrids which contained an approximately complete chromosomal complement from both parental cells were nontumorigenic when 1 X 10(7) cells were injected s.c. into athymic (nude) mice, whereas the parental HT1080 cells produced tumors in 100% of the animals with no latency period following injection of 2 X 10(6) cells. Tumorigenic variants were obtained from these hybrids which had lost only a few chromosomes compared to cells from the nontumorigenic mass cultures. In addition, several near-hexaploid hybrids were obtained which contained approximately a double chromosomal complement from the HT1080 parental line and a single chromosomal complement from the normal fibroblasts. All of these near-hexaploid hybrids produce tumors in 100% of nude mice with no latency period. Our results indicate that tumorigenicity of these particular human malignant cells of mesenchymal origin can be suppressed when fused with normal diploid fibroblasts. In addition, the results suggest that tumorigenicity in this system is chromosomal dosage dependent, since a diploid chromosomal complement from normal fibroblasts is capable of suppressing the tumorigenicity of a near-diploid but not a near-tetraploid chromosomal complement from the tumorigenic HT1080 parent. Finally, the loss of chromosome 1 (the chromosome to which the N-ras oncogene has been assigned) as well as chromosome 4 was correlated with the reappearance of tumorigenicity in the rare variant populations from otherwise nontumorigenic near-tetraploid hybrid cultures. Our results also suggest the possibility that tumorigenicity in these hybrids may be a gene dosage effect involving the number of activated N-ras genes in the hybrids compared to the gene(s) controlling the suppression of the activated N-ras genes.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005354 Fibrosarcoma A sarcoma derived from deep fibrous tissue, characterized by bundles of immature proliferating fibroblasts with variable collagen formation, which tends to invade locally and metastasize by the bloodstream. (Stedman, 25th ed) Fibrosarcomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid

Related Publications

W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
January 1981, Experimental cell biology,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
January 1981, Cytogenetics and cell genetics,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
June 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
March 1999, International journal of cancer,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
January 2003, The American journal of Chinese medicine,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
February 2012, Phytomedicine : international journal of phytotherapy and phytopharmacology,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
April 2015, International journal of oncology,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
January 2001, Biochemical and biophysical research communications,
W F Benedict, and B E Weissman, and C Mark, and E J Stanbridge
November 1981, Somatic cell genetics,
Copied contents to your clipboard!