Metabolism of 2-acetylaminofluorene by two 3-methylcholanthrene-inducible forms of rat liver cytochrome P-450. 1984

J A Goldstein, and R Weaver, and D W Sundheimer

The present study examines the contribution of two major 3-methylcholanthrene (3-MC)-inducible forms of rat liver cytochrome P-450 (P-448MC and P-448HCB) to the metabolism of 2-acetylaminofluorene (AAF). In a reconstituted enzyme system, purified rat liver P-448MC metabolized AAF at a 10-fold greater rate than P-448HCB. The major metabolites produced by cytochrome P-448MC were 3-hydroxy (OH) (30%), 5-OH (24%), 7-OH (22%), and 9-OH (10%). N-OH-AAF (3%) was a minor metabolite. In contrast, P-448HCB catalyzed the N-hydroxylation of AAF preferentially (15% of total metabolites). The other primary metabolites formed by this isozyme were 7-OH-AAF (30%), 5-OH-AAF (29%), and 9-OH-AAF (25%). Cytochrome P-448HCB catalyzed the formation of less 3-OH-AAF (7%) than did P-448MC (30%). Since cytochrome P-448HCB is immunochemically related to P-448MC, specific antisera to both isozymes were made by immunoabsorption with the appropriate antigen bound covalently to Sepharose. Anti-P-448MC inhibited AAF metabolism approximately 43% in microsomes from 3-MC-induced male rats and 30% in microsomes from rats treated with 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), another 3-MC-type inducer. Anti-P-448HCB inhibited total metabolism of AAF by only 22 and 38% in microsomes from 3-MC- and HCB-induced rats. However, anti-P-448HCB inhibited N-hydroxylation by 60% in both 3-MC- and HCB-induced microsomes. Anti-P-448MC did not inhibit N-hydroxylation. Neither antibody affected AAF metabolism in control microsomes. These data suggest that, in rat liver, two 3-MC-inducible izozymes of cytochrome P-450 metabolize AAF; however, N-hydroxylation is catalyzed primarily by one of these isozymes, cytochrome P-448HCB.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

J A Goldstein, and R Weaver, and D W Sundheimer
September 1984, Journal of biochemistry,
J A Goldstein, and R Weaver, and D W Sundheimer
January 1985, Carcinogenesis,
J A Goldstein, and R Weaver, and D W Sundheimer
January 1982, Carcinogenesis,
J A Goldstein, and R Weaver, and D W Sundheimer
December 1980, Cancer research,
J A Goldstein, and R Weaver, and D W Sundheimer
May 1983, Journal of biochemistry,
J A Goldstein, and R Weaver, and D W Sundheimer
November 1983, Journal of biochemistry,
J A Goldstein, and R Weaver, and D W Sundheimer
February 1990, Biochemical pharmacology,
J A Goldstein, and R Weaver, and D W Sundheimer
July 1990, Biokhimiia (Moscow, Russia),
J A Goldstein, and R Weaver, and D W Sundheimer
January 1983, Cancer research,
Copied contents to your clipboard!