The effect of low-dose dopamine infusion on anterior pituitary hormone secretion in normal female subjects. 1984

J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies

The effect of low-dose dopamine infusion on anterior pituitary hormone secretion in a group of seven healthy female subjects is reported. Subjects were infused with NaCl solution (154 mmol/l) (control) or dopamine (0.01 and 0.1 micrograms min-1 kg-1 for 120 min at each rate) on separate days in the early follicular phase of consecutive menstrual cycles. Serum prolactin decreased during infusion of dopamine at 0.01 micrograms min-1 kg-1 but a similar fall was found in the control group. When the rate of dopamine infusion was increased to 0.1 micrograms min-1 kg-1 a further substantial decrease in prolactin concentration occurred, whereas prolactin in the control group showed no change. At the end of the period of dopamine infusion at 0.1 micrograms min-1 kg-1 serum prolactin remained significantly (P less than 0.025) lower than in the control group (85 +/- 12 vs 180 +/- 21 m-units/1). No change in thyrotrophin (TSH), growth hormone (GH) or luteinizing hormone (LH) was seen during either rate of dopamine infusion compared with control. While dopamine infusion at 0.1 micrograms min-1 kg-1 caused significant inhibition of prolactin secretion in normal female subjects, other pituitary hormone secretion was not affected: it is suggested that under the conditions of this study dopamine in hypophysial portal blood is not of primary importance in the control of basal TSH, GH and LH release.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D010908 Pituitary Hormones, Anterior Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules. Adenohypophyseal Hormones,Anterior Pituitary Hormones,Hormones, Adenohypophyseal,Hormones, Anterior Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012636 Secretory Rate The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa. Rate, Secretory,Rates, Secretory,Secretory Rates
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone

Related Publications

J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
February 1983, The Journal of clinical endocrinology and metabolism,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
September 1976, The Journal of clinical endocrinology and metabolism,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
September 1980, The Journal of clinical endocrinology and metabolism,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
June 1981, Acta endocrinologica,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
January 1986, Neuroendocrinology,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
August 2002, Psychopharmacology,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
February 1985, Journal of endocrinological investigation,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
August 1999, Journal of clinical psychopharmacology,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
January 1986, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J M Connell, and S G Ball, and G C Inglis, and G H Beastall, and D L Davies
July 1976, Clinical endocrinology,
Copied contents to your clipboard!