Resorption of bone by isolated rabbit osteoclasts. 1984

T J Chambers, and P A Revell, and K Fuller, and N A Athanasou

A carborundum wheel was used to prepare slices of cortical bone that demonstrate a predictable surface appearance in the scanning electron microscope. Osteoclasts were mechanically disaggregated from neonatal rabbit long bones and settled onto these slices. After 24h in culture osteoclasts were associated with areas of excavation in the bone surface. These excavated areas typically showed a well-defined outline and a distinctive fibrillar base, which resembled the pattern of collagen fibrils in bone. The majority of such concavities were of approximately circular outline and of smaller diameter than the associated osteoclast, but other excavations were elongated or of complex morphology, and may have been produced by osteoclasts that were resorbing bone while they migrated. Irregular concavities tended to be more shallow but to occupy a greater area of the bone surface than circular concavities. Roughening of the bone surface without detectable excavation was also seen adjacent to osteoclasts. Calcitonin and cytochalasin B, which inhibit osteoclastic motility, also inhibited bone resorptive activity by these cells. The techniques described in this paper represent a model system with which to assess the direct and indirect effects of hormones, cells and substrate composition on the induction, stimulation and inhibition of osteoclastic bone resorption and to investigate the mechanisms by which cells degrade extracellular matrices.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
September 2000, Science (New York, N.Y.),
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
August 1984, Journal of cell science,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
September 1997, The Journal of endocrinology,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
September 1997, Experimental physiology,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
April 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
December 1989, Calcified tissue international,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
December 1987, Bollettino della Societa italiana di biologia sperimentale,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
April 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
January 1999, Proceedings of the National Academy of Sciences of the United States of America,
T J Chambers, and P A Revell, and K Fuller, and N A Athanasou
November 1994, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
Copied contents to your clipboard!