The effect of nitroso-chloramphenicol on mitochondrial DNA polymerase activity. 1984

L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil

We studied the effects of nitroso-chloramphenicol, chloramphenicol, amino-chloramphenicol, and thiamphenicol on the activity of mitochondrial DNA polymerase of rat liver. 3H-thymidine triphosphate incorporation into DNA was used to measure the DNA polymerase activity in the mitochondrial matrix fraction. This fraction was in the supernatant of sonicated mitochondria obtained by ultracentrifugation. Under standard experimental conditions, thymidine triphosphate incorporation was time dependent up to 10 minutes. This activity was enhanced by beta-mercaptoethanol and was blocked by the known polymerase inhibitors ethidium bromide and 2',3'-dideoxythymidine 5'-triphosphate. Chloramphenicol and its analogues, amino-chloramphenicol and thiamphenicol, did not have a significant effect on the polymerase activity, whereas nitroso-chloramphenicol was inhibitory. The degree of inhibition was dependent on the experimental conditions. Thus, in the absence of beta-mercaptoethanol, nitroso-chloramphenicol caused inhibition; however, in its presence, there was no significant inhibitory effect. Under similar conditions, the addition of dithiothreitol also provided partial protection. On the other hand, the inhibition by nitroso-chloramphenicol was significantly enhanced with its preincubation in the mitochondrial matrix fraction before the addition of nucleotides and DNA; thus after 40 minutes of preincubation, nitroso-chloramphenicol at a concentration of 200 mumol/L gave 53% inhibition, and produced total inhibition at 600 mumol/L. The addition of NADH or NADPH to the preincubation medium produced substantial protection against nitroso-chloramphenicol, whereas nicotinamide-adenine dinucleotide had no effect. These results suggest that mitochondrial DNA polymerase may be a target for nitroso-chloramphenicol action. The potentiation of that action by preincubation and the protection against it by NADH and NADPH suggest the involvement of intermediate metabolic steps for maximal inhibition.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA

Related Publications

L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
August 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
June 1973, Archivio di fisiologia,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
January 1991, Folia microbiologica,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
January 1986, Respiration; international review of thoracic diseases,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
January 2006, DNA repair,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
July 1981, Journal of neurochemistry,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
June 1981, Radiation research,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
April 2006, Biotechnology journal,
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
July 1982, Biokhimiia (Moscow, Russia),
L O Lim, and W H Abou-Khalil, and A A Yunis, and S Abou-Khalil
November 1979, Molecular and cellular biochemistry,
Copied contents to your clipboard!