SEM localization of cell-surface-associated fibronectin in the cranium of chick embryos utilizing immunolatex microspheres. 1984

S Meier, and C Drake

Fibronectin has been localized to basement membranes and cell surfaces with the light microscope by fluorescent staining of thick sections, and with the TEM by immunoperoxidase reaction. However, these methods are limited because it is difficult to appreciate the patterned distribution of fibronectin from sectioned material. We have developed a probe for fibronectin that facilitates its identification with the SEM. Our probe consists of two parts; the first component is a derivatized methacrylate microsphere 90 nm in diameter, linked to purified sheep anti-rabbit IgG. The second component is anti-fibronectin IgG raised in rabbits. Stage-3 to -12 chick embryos were fixed and the ectoderm covering the cranial mesoderm was removed. Embryos were treated with testicular hyaluronidase, exposed to rabbit anti-fibronectin IgG and finally to sheep anti-rabbit IgG conjugated microspheres. As expected, the basal lamina of surface and neural ectoderm as well as the remaining fibrous ECM were heavily decorated with microspheres, whereas control embryos treated with preimmune serum were beadless. Fibronectin was localized on the cell soma and processes of primary mesenchyme as early as stage 3. In addition, it was possible to decorate to various extents, populations of prosencephalic, mesencephalic, and rhombencephalic cranial neural crest cells. Our studies suggest that fibronectin is present in the cranium of chick embryos at earlier times than heretofore realized, and that fibronectin accumulates in a cranial to caudal gradient that reflects the sequential differentiation of the embryonic axis.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012886 Skull The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN. Calvaria,Cranium,Calvarium,Skulls

Related Publications

S Meier, and C Drake
January 1987, The Journal of cell biology,
S Meier, and C Drake
March 1976, Experimental cell research,
S Meier, and C Drake
October 1982, Journal of embryology and experimental morphology,
S Meier, and C Drake
January 1979, Birth defects original article series,
Copied contents to your clipboard!