The activity of cerebellar neurones of the decerebrate dogfish Scyliorhinus during spontaneous swimming movements. 1984

D H Paul, and B L Roberts

Patterns of activity of cerebellar neurones in response to cutaneous stimulation and during spontaneous, swimming-like movements were examined, using microelectrodes, in decerebrate dogfish (Scyliorhinus canicula). Continuous swimming movements, lasting for several hours, were obtained in fish in which the medial longitudinal fasciculus (m.l.f.) was lesioned in the rhombencephalon. Purkinje cells (P cells) and some stellate cells (S cells) were observed to discharge rhythmically, in phase with swimming movements. These units were distributed throughout the cerebellum, but with no apparent somatotopic distribution. After curarization, rhythmic motor discharges could still be recorded from ventral roots and phase locked P cell discharges were recorded from the cerebellum. P cells that discharged rhythmically during active swimming movements, did not do so when the body was oscillated passively during quiescent periods. Cutaneous stimulation evoked burst discharges in many P cells at long latency (ca. 100 ms) both before and after curarization and whether or not a rhythmic motor output was being generated. In rhythmically discharging units, a similar response was obtained when cutaneous stimulation was applied during that part of a cycle when the unit was most or least active. It was concluded that cerebellar neurones discharged in phase with the output of the spinal locomotory rhythm generators and independently of peripheral sensory feed-back.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003472 Curare Plant extracts from several species, including genera STRYCHNOS and Chondodendron, which contain TETRAHYDROISOQUINOLINES that produce PARALYSIS of skeletal muscle. These extracts are toxic and must be used with the administration of artificial respiration.
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004284 Dogfish Sharks of the family Squalidae, also called dogfish sharks. They comprise at least eight genera and 44 species. Their LIVER is valued for its oil and its flesh is often made into fertilizer. Squalidae,Dogfishes
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

D H Paul, and B L Roberts
October 1972, The Journal of experimental biology,
D H Paul, and B L Roberts
September 1980, The Journal of comparative neurology,
D H Paul, and B L Roberts
July 1985, The Journal of experimental biology,
D H Paul, and B L Roberts
August 1972, The Journal of endocrinology,
D H Paul, and B L Roberts
September 1993, The American journal of physiology,
D H Paul, and B L Roberts
February 1998, General and comparative endocrinology,
D H Paul, and B L Roberts
July 2010, Reproduction (Cambridge, England),
D H Paul, and B L Roberts
July 1977, The Journal of physiology,
Copied contents to your clipboard!