Secondary metabolic changes in von Gierke's disease (Type I glycogen storage disease). 1982

P R Blackett

Deficiency of glucose-6-phosphatase in Type I glycogen storage disease (GSD) results in hypoglycemia and excessive accumulation of glucose-6-phosphate. As a result, lactic acid, uric acid, and lipids are formed as end-products. The formation of these metabolites are discussed with an emphasis on monitoring therapeutic progress. In addition, hyperlipidemia and associated changes in apolipoproteins are considered as indices of the clinical course.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007659 Ketones Organic compounds containing a carbonyl group Ketone
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D005953 Glycogen Storage Disease Type I An autosomal recessive disease in which gene expression of glucose-6-phosphatase is absent, resulting in hypoglycemia due to lack of glucose production. Accumulation of glycogen in liver and kidney leads to organomegaly, particularly massive hepatomegaly. Increased concentrations of lactic acid and hyperlipidemia appear in the plasma. Clinical gout often appears in early childhood. Glucose-6-Phosphatase Deficiency,Glucosephosphatase Deficiency,Glycogenosis 1,Hepatorenal Glycogen Storage Disease,von Gierke Disease,Deficiency, Glucosephosphatase,Gierke Disease,Gierke's Disease,Glycogen Storage Disease 1 (GSD I),von Gierke's Disease,Deficiencies, Glucose-6-Phosphatase,Deficiencies, Glucosephosphatase,Deficiency, Glucose-6-Phosphatase,Disease, Gierke,Disease, Gierke's,Disease, von Gierke,Disease, von Gierke's,Gierkes Disease,Glucose 6 Phosphatase Deficiency,Glucose-6-Phosphatase Deficiencies,Glucosephosphatase Deficiencies,von Gierkes Disease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014527 Uric Acid An oxidation product, via XANTHINE OXIDASE, of oxypurines such as XANTHINE and HYPOXANTHINE. It is the final oxidation product of purine catabolism in humans and primates, whereas in most other mammals URATE OXIDASE further oxidizes it to ALLANTOIN. 2,6,8-Trihydroxypurine,Ammonium Acid Urate,Monosodium Urate,Monosodium Urate Monohydrate,Potassium Urate,Sodium Acid Urate,Sodium Acid Urate Monohydrate,Sodium Urate,Sodium Urate Monohydrate,Trioxopurine,Urate,Acid Urate, Ammonium,Acid Urate, Sodium,Acid, Uric,Monohydrate, Monosodium Urate,Monohydrate, Sodium Urate,Urate Monohydrate, Monosodium,Urate Monohydrate, Sodium,Urate, Ammonium Acid,Urate, Monosodium,Urate, Potassium,Urate, Sodium,Urate, Sodium Acid

Related Publications

P R Blackett
September 1973, Indian pediatrics,
P R Blackett
April 1990, Schweizerische Rundschau fur Medizin Praxis = Revue suisse de medecine Praxis,
P R Blackett
July 1969, The American journal of gastroenterology,
P R Blackett
February 1953, A.M.A. archives of dermatology and syphilology,
P R Blackett
June 1994, American journal of obstetrics and gynecology,
P R Blackett
May 1962, Archives of internal medicine,
Copied contents to your clipboard!