Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein. 1982

T J Larson, and G Schumacher, and W Boos

A collection of hybrid plasmids carrying either the wild-type or mutated glpT gene was generated in vitro and used to characterize the glpT-dependent active transport system for sn-glycerol-3-phosphate in Escherichia coli K-12. Restriction endonuclease analysis and recloning of DNA fragments localized glpT to a 3-kilobase pair PstI-HpaI segment of DNA. Comparison of DNA carrying glpT-lacZ fusions with DNA carrying intact glpT allowed determination of the direction of transcription. Through characterization of the proteins synthesized by strains harboring hybrid plasmids carrying amber, missense, or deletion mutations in glpT, it was shown that glpT is a promoter-proximal gene in an operon consisting of at least two genes. The gene product of glpT, the sn-glycerol-3-phosphate permease, was found associated with the inner membrane. It could be solubilized by treatment with sodium dodecyl sulfate at 50 degrees C. Its molecular weight, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was dependent upon sample treatment before electrophoresis. The apparent molecular weight was 44,000 when membrane fractions were heated to 50 degrees C; subsequent treatment at 95 degrees C modified the protein such that it migrated faster (apparent molecular weight = 33,000). Several missense mutations in glpT were negatively dominant over wild-type glpT, indicating that the active form of the permease is multimeric. A gene (named glpQ) promoter distal to glpT codes for a periplasmic protein. This protein had previously been named GLPT protein to indicate its relationship to the glpT gene. The present report demonstrates that it is not the gene product of glpT and is not required for active transport of sn-glycerol-3-phosphate.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

T J Larson, and G Schumacher, and W Boos
July 1986, The Journal of biological chemistry,
T J Larson, and G Schumacher, and W Boos
March 1985, Journal of bacteriology,
T J Larson, and G Schumacher, and W Boos
January 1982, Molecular & general genetics : MGG,
T J Larson, and G Schumacher, and W Boos
September 1997, Biochimica et biophysica acta,
T J Larson, and G Schumacher, and W Boos
November 2009, Journal of bacteriology,
T J Larson, and G Schumacher, and W Boos
November 1979, The Journal of biological chemistry,
T J Larson, and G Schumacher, and W Boos
August 1986, The Journal of biological chemistry,
Copied contents to your clipboard!