Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. 1980

N Mano, and K Yamamoto

1. Three rhesus monkeys were trained to perform a rapid (greater than 100 degrees/s) and a slow (less than 100 degrees/s) wrist movement guided by a visual cue. While the monkey performed wrist flexion or extension from a neutral position, Purkinje cell (P-cell) discharges were recorded from intermediate and lateral parts of lobules IV--VI of the cerebellum. 2. By the visually guided movement, we could control the direction of the wrist movement; the holding position at three different angles of the wrist joint: neutral, about 30 degrees flexed, and extended; and the velocity in four ranges: a) 10--30, b) 30--100, c) 100--300, and d) 300-650 degrees/s. 3. From 92 P-cells that significantly increased or decreased the discharge rate of simple spikes with task performance, we selected 45 P-cells ("response-locked" cells) as related to the wrist movement by statistical analyses of temporal correlation of P-cell activities to wrist movement. The direction of the frequency modulation (increase or decrease) was in a nonreciprocal fashion with oppositely directed wrist movements (flexion or extension) in 90% of the response-locked P-cells. The maintained frequencies at three holding positions did not significantly differ. 4. Nineteen P-cells changed their spike frequencies temporally locked to both rapid and slow wrist movements. By the discharge pattern in relation to the rapid and slow movements, these cells were classified into two groups. Discharge pattern in group I P-cells (n = 5) conformed very well to that of velocity, and a linear correlation between the instantaneous increase of the discharge rate and velocity was observed in analyses of individual trials. Group II cells showed increase (n = 9) or decrease (n = 5) of firing rate (20--50 spikes/s) larger than group I cells (less than 10 spikes/s) as long as the wrist was moving, even with very slow velocity (less than 30 degrees/s. The correlations between the increase of the discharge rate and the velocity in individual trials were less clear in group II than in group I cells. 5. The present study suggests the importance of the cerebellar cortex in controlling the slow limb movement as well as the rapid movement. The selected P-cells in this study also suggested that the velocity or some dynamic aspect related to the velocity of limb movement is the major information among the dissociated motion parameters coded by the simple-spike frequencies of the P-cells in the cerebellar hemisphere. Whether the latter suggestion represents an essential characteristic of all limb movement-related P-cells or reflects only a feature of a special subgroup among the movement-related cells should be clarified in future experiments.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013647 Task Performance and Analysis The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work. Critical Incident Technique,Critical Incident Technic,Task Performance,Task Performance, Analysis,Critical Incident Technics,Critical Incident Techniques,Incident Technic, Critical,Incident Technics, Critical,Incident Technique, Critical,Incident Techniques, Critical,Performance, Analysis Task,Performance, Task,Performances, Analysis Task,Performances, Task,Task Performances,Task Performances, Analysis,Technic, Critical Incident,Technics, Critical Incident,Technique, Critical Incident,Techniques, Critical Incident
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

N Mano, and K Yamamoto
March 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N Mano, and K Yamamoto
September 1984, Brain : a journal of neurology,
Copied contents to your clipboard!