| D007031 |
Hypothalamus |
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. |
Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas |
|
| D007527 |
Isoenzymes |
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. |
Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes |
|
| D008968 |
Molecular Conformation |
The characteristic three-dimensional shape of a molecule. |
Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular |
|
| D008995 |
Monoamine Oxidase |
An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. |
Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine |
|
| D008996 |
Monoamine Oxidase Inhibitors |
A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) |
MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase |
|
| D002540 |
Cerebral Cortex |
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. |
Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical |
|
| D003010 |
Clorgyline |
An antidepressive agent and monoamine oxidase inhibitor related to PARGYLINE. |
Clorgilin,Chlorgyline,Clorgiline |
|
| D006632 |
Histamine |
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. |
Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001711 |
Biotransformation |
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II. |
|
|