Chromosome replication in sporulating cells of Bacillus subtilis. 1980

M G Sargent

A method of specifically labeling the chromosomal terminus of Bacillus subtilis is described. When sporulating cultures were pulse-labeled with [(3)H]thymidine and then treated with 6-(p-hydroxyphenylazo)uracil, a drug which inhibits deoxyribonucleic acid (DNA) synthesis rapidly and completely, the only labeled spores formed were those that had completed replication during the pulse period. DNA-mediated transformation was used to show that the DNA of spores formed in the presence of 6-(p-hydroxyphenylazo)uracil had the same ratio of origin to terminus markers as DNA from untreated spores. Furthermore, spores formed in the presence of 6-(p-hydroxyphenylazo)uracil had the same DNA content as untreated spores. These two observations indicated that spores formed in the presence of 6-(hydroxyphenylazo)uracil contained completed chromosomes. The rate of termination of chromosomes destined to be packaged into spores was determined by this method, using the Sterlini-Mandelstam replacement system and a single medium exhaustion system for inducing sporulation. With both systems the rate of termination reached a broad peak 2 h after the start of sporogenesis. This was measured from the time of resuspension by using the replacement system and from the point where exponential growth ceased in the exhaustion system. The amount of spore DNA synthesized in the Sterlini-Mandelstam sporulation-inducing medium was very close to one-half the amount of the DNA present in mature spores. This suggests that chromosomes destined to be packaged into spores were replicated from close to the origin and possibly initiated in the sporulation-inducing medium. A method was devised for estimating the time taken to complete replication of the chromosomes destined to be packaged into spores. This was probably no more than 50 min. Whereas starvation must have occurred almost simultaneously in most cells in the population, the chromosome replication that was essential for sporogenesis was distributed over a wide time span. Thus, in some cells, replication started within 10 min of the nutritional step-down, but the peak rate was not reached for 1 h; thereafter replication continued at a substantial rate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D006906 Hydroxyphenylazouracil Inhibitor of DNA replication in gram-positive bacteria. 6-(4-Hydroxyphenylazo)uracil
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial

Related Publications

M G Sargent
February 1998, The Journal of general and applied microbiology,
M G Sargent
May 1982, Nihon saikingaku zasshi. Japanese journal of bacteriology,
M G Sargent
January 1973, Journal of molecular biology,
M G Sargent
January 1991, Research in microbiology,
M G Sargent
March 1975, Journal of bacteriology,
M G Sargent
February 1976, Biochemical and biophysical research communications,
Copied contents to your clipboard!