Formation and morphology of Reissner's fibre in primates. A scanning electron microscopic study. 1980

A Castenholz, and H Zöltzer

The subcommissural ependyma of the third ventricle, the rhomboid fossa, and the central canal of the spinal cord were examined in Tupaia, Saimiri, and Cebus by scanning electron microscopy. In all three species studied, fine filaments, granules, and amorphous masses were found at the surface of the subcommissural ependyma representing the original structures of the Reissner's fibre (RF). Bundles of filaments or net-like structures ultimately forming a compact secretory plate develop in the caudal part of the secretory zone. In Tupaia and Saimiri, the secretion collects in a groove-like depression in the centre of the dorsal ventricular wall. In Cebus two secretory pathways occur in the lateral sulci, which eventually merge together in the aqueduct. In the rhomboid fossa and the spinal cord, the RF is in close contact with the ependyma, and its surface is longitudinally grooved and covered with granular material and cells. The present scanning electron microscopic findings speak in favour of a merocrine type of secretion in the apical region of the ependymal cells. Ciliary movement and flow of cerebrospinal fluid are assumed to be the most important factors regulating the formation of the RF.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D011443 Strepsirhini A suborder of PRIMATES consisting of the following five families: CHEIROGALEIDAE; Daubentoniidae; Indriidae; LEMURIDAE; and LORISIDAE. Lemuriformes,Lemuroidea,Lepilemur,Lepilemuridae,Prosimii,Sportive Lemurs,Prosimians,Strepsirrhini,Lemur, Sportive,Lepilemurs,Sportive Lemur
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D004805 Ependyma A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD. Ependymas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

A Castenholz, and H Zöltzer
January 1984, Anatomischer Anzeiger,
A Castenholz, and H Zöltzer
August 1980, Journal of anatomy,
A Castenholz, and H Zöltzer
April 1984, Acta odontologica Scandinavica,
A Castenholz, and H Zöltzer
January 1982, Laboratornoe delo,
A Castenholz, and H Zöltzer
August 1974, The Tohoku journal of experimental medicine,
Copied contents to your clipboard!