DNA polymerase alpha from Drosophila melanogaster embryos. Subunit structure. 1980

G Villani, and B Sauer, and I R Lehman

The homogeneous DNA polymerase alpha from early embryos of Drosophila melanogaster contains four polypeptides designated alpha, beta, gamma, and delta, with molecular weights of 148,000, 58,000, 46,000, and 43,000, respectively (Banks, G. R., Boezi, J. A., and Lehman, I. R. (1979) J. Biol. Chem. 254, 9886-9892). The four polypeptides are structurally distinct from one another, as indicated by their different peptide patterns following limited proteolysis with Staphylococcus aureus protease. Furthermore, the inclusion of the protease inhibitors, leupeptin and pepstatin, in addition to phenpylmethylsulfonyl fluoride and sodium metabisulfite, which are used routinely during the purification, does not alter the pattern of polypeptides in the purified polymerase, suggesting that the four polypeptides are not a consequence of nonspecific proteolysis during purification. Thus, the alpha, beta, gamma, and delta polypeptides appear to be distinct subunits of the alpha-DNA polymerase of D. melanogaster. The alpha subunit is required for DNA polymerase activity. However, the specific activity of the isolated subunit is substantially lower than when it is associated with the beta, gamma, and delta subunits.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

G Villani, and B Sauer, and I R Lehman
November 1987, The Journal of biological chemistry,
G Villani, and B Sauer, and I R Lehman
November 1986, The Journal of biological chemistry,
G Villani, and B Sauer, and I R Lehman
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
G Villani, and B Sauer, and I R Lehman
October 1993, Proceedings of the National Academy of Sciences of the United States of America,
G Villani, and B Sauer, and I R Lehman
August 1981, The Journal of biological chemistry,
G Villani, and B Sauer, and I R Lehman
November 1992, Nucleic acids research,
G Villani, and B Sauer, and I R Lehman
November 1987, The Journal of biological chemistry,
G Villani, and B Sauer, and I R Lehman
December 1995, The Journal of biological chemistry,
G Villani, and B Sauer, and I R Lehman
August 1983, The Journal of biological chemistry,
Copied contents to your clipboard!