Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. 1980

A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman

We have previously shown that aspirin-treated endothelial cells synthesize prostacyclin (PGI(2)) from the purified prostaglandin endoperoxide PGH(2) (1978. J. Biol. Chem.253: 7138). To ascertain whether aspirin-treated endothelial cells produce PGI(2) from endoperoxides released by stimulated platelets, [(3)H]arachidonic acid-prelabeled platelets were reacted in aggregometer cuvettes with the calcium ionophore A 23187, thrombin, or collagen in the presence of aspirin-treated endothelial cell suspensions. This procedure permitted thin-layer radiochromatographic quantitation of [(3)H]PGI(2) as [(3)H]6-keto-PGF(1alpha) and [(3)H]thromboxane A(2) (TXA(2)) as [(3)H]TXB(2), as well as analysis of platelet aggregation responses in the same sample. In the presence of aspirin-treated endothelial cells, platelet aggregation in response to all three agents was inhibited. [(3)H]6-keto-PGF(1alpha) was recovered from the supernates of the combined cell suspensions after stimulation by all three agents. The order of PGI(2) production initiated by the stimuli was ionophore > thrombin > collagen. The amounts of platelet [(3)H]TXB(2) recovered were markedly reduced by the addition of aspirin-treated endothelial cells. In separate experiments, 6-keto-PGF(1alpha) and TXB(2) were quantitated by radioimmunoassay; the results paralleled those obtained with the use of radiolabeling. The quantity of 6-keto-PGF(1alpha) measured by radioimmunoassay represented amounts of PGI(2) sufficient to inhibit platelet aggregation. These results were obtained when 200,000 platelets/mul were combined with 3,000-6,000 aspirin-treated endothelial cells/mul. At higher platelet levels the proportion of 6-keto-PGF(1alpha) to TXB(2) decreased and platelet aggregation occurred. Control studies indicated that aspirin-treated endothelial cells could not synthesize PGI(2) from exogenous radioactive or endogenous arachidonate when stimulated with thrombin. Therefore the endothelial cell suspensions could only have used endoperoxides from stimulated platelets.Thus, under our experimental conditions, production by endothelial cells of PGI(2) from endoperoxides derived from activated platelets could be demonstrated by two independent methods. These experimental conditions included: (a) enhanced platelet-endothelial cell proximity, as attainable in stirred cell suspensions; (b) use of increased endothelial cell/platelet ratios; and (c) utilization of arachidonate of high specific activity in radiolabeling experiments. Furthermore, when a mixture of platelets and endothelial cells that were not treated with aspirin was stimulated with thrombin, more than twice as much 6-keto-PGF(1alpha) was formed than when endothelial cells were stimulated alone. These results indicate that endothelial cells can utilize platelet endoperoxides for PGI(2) formation to a significant extent.

UI MeSH Term Description Entries
D011449 Prostaglandin Endoperoxides Precursors in the biosynthesis of prostaglandins and thromboxanes from arachidonic acid. They are physiologically active compounds, having effect on vascular and airway smooth muscles, platelet aggregation, etc. Endoperoxides, Prostaglandin
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic

Related Publications

A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
January 1986, Blood,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
March 1981, The Journal of clinical investigation,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
February 1985, Journal of applied physiology (Bethesda, Md. : 1985),
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
February 1987, Transplantation proceedings,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
February 1980, Biochemical and biophysical research communications,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
June 1981, Cell,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
March 1991, The Journal of clinical endocrinology and metabolism,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
February 1989, Canadian journal of physiology and pharmacology,
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
March 1985, Science (New York, N.Y.),
A J Marcus, and B B Weksler, and E A Jaffe, and M J Broekman
December 1983, Journal of lipid research,
Copied contents to your clipboard!