Retinotopic organization of striate and extrastriate visual cortex in the mouse. 1980

E Wagor, and N J Mangini, and A L Pearlman

Detailed retinotopic maps of primary visual cortex (area 17) and the extrastriate visual regions surrounding it (areas 18a and 18b) have been constructed for the C57BL/6J mouse using standard electrophysiological mapping techniques. Primary visual cortex (area 17), as defined cytoarchitectonically, contains one complete representation of the contralateral visual field, termed V1, in which azimuth and elevation lines are approximately orthogonal. The upper visual field is represented caudally and the nasal field laterally. Binocular cells are encountered in the cortical representation of the nasal 30--40 degrees of the visual field, and there is an expanded representation of the nasal field. Extrastriate visual cortex of the mouse, like that of other mammals, contains multiple representations of the visual field. The cytoarchitectonic region of cortex lateral and rostral to area 17, termed area 18a, contains at least two such representations. The more medial of these, which by convention we have called V2, is a narrow strip surrounding V1 on its lateral and rostral aspects; the vertical meridian lies along a portion of its common border with V1. The visual field representation in V2 is not a mirror image of that in V1; the representation of the horizontal meridian forms the lateral border of V2, and the visual field representation is split so that adjacent points on either side of the horizontal meridian are represented in nonadjacent parts of V2. The other visual field representation within area 18a, which we have termed V3, is a small but apparently complete representation that lies lateral to V2. The visual field representations medial to area 17 correspond to cytoarchitectonic area 18b. Area 18b contains two representations of the temporal visual field that we have labeled Vm-r and Vm-c, and contains little or no representation of the most nasal aspect of the field.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D012377 Rodentia A mammalian order which consists of 29 families and many genera. Beavers,Capybaras,Castor Beaver,Dipodidae,Hydrochaeris,Jerboas,Rodents,Beaver,Capybara,Hydrochaeri,Jerboa,Rodent,Rodentias
D012589 Sciuridae A family of the order Rodentia which contains 49 genera. Some of the more common genera are MARMOTA, which includes the marmot and woodchuck; Sciurus, the gray squirrel, S. carolinensis, and the fox squirrel, S. niger; Tamias, the eastern and western chipmunk; and Tamiasciurus, the red squirrel. The flying squirrels, except the scaly-tailed Anomaluridae, also belong to this family. Chipmunks,Citellus,Eutamias,Prairie Dogs,Spermophilus,Squirrels,Susliks,Tamias,Chipmunk,Dog, Prairie,Dogs, Prairie,Prairie Dog,Squirrel,Suslik

Related Publications

E Wagor, and N J Mangini, and A L Pearlman
August 1983, Brain research,
E Wagor, and N J Mangini, and A L Pearlman
January 1992, Biological research,
E Wagor, and N J Mangini, and A L Pearlman
April 1973, Brain research,
E Wagor, and N J Mangini, and A L Pearlman
May 1982, Brain research,
E Wagor, and N J Mangini, and A L Pearlman
June 2011, Journal of neurophysiology,
E Wagor, and N J Mangini, and A L Pearlman
December 1982, Experimental neurology,
E Wagor, and N J Mangini, and A L Pearlman
November 1982, Science (New York, N.Y.),
E Wagor, and N J Mangini, and A L Pearlman
May 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E Wagor, and N J Mangini, and A L Pearlman
January 1978, The Journal of comparative neurology,
Copied contents to your clipboard!