Origins of metabolic diversity: substitution of homologous sequences into genes for enzymes with different catalytic activities. 1980

W K Yeh, and L N Ornston

Similar amino acid sequences were found in portions of bacterial enzymes that mediate different biochemical transformations. Reaction catalyzed by the enzymes include oxygenation, decarboxylation, isomerization, and hydrolysis. The proteins share a common evolutionary history because they participate in an overall catabolic process known as the beta-ketoadipate pathway. One interpretation of the sequence similarities might be that duplication of a single gene gave rise to ancestral genes for the enzymes with different catalytic activities. According to this view, homologous sequences from the ancestral gene were conserved as the proteins diverged to assume different functions. This hypothesis is vitiated by comparison of the NH2-terminal amino acid sequences of sets of enzymes that mediate identical or analogous metabolic reactions within an organism. Gene duplications giving rise to the enzymes within each set must have followed duplication of a putative ancestral gene for all the sets. Yet the amino acid sequences of the proteins within each set have diverged widely, and against this background of divergence the conservation of sequences from an ancestor common to all the enzymes is unlikely. Rather, it appears that most regions of sequence similarity shared by enzymes from different sets were acquired subsequent to their divergence from any common ancestor. In some cases it appears that relatively short regions of sequence homology were achieved by mutations causing the transfer of sequence information from one set of structural genes to structural genes in another set. Alignment of homologous amino acid sequences within any single set requires the introduction of few gaps. Because gaps are required to align sequences that have been altered by the insertion of genetic material, the evidence indicates that copies of oligonucleotides were exchanged by genetic substitution among different structural genes as they coevolved.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

W K Yeh, and L N Ornston
January 1988, Zhurnal evoliutsionnoi biokhimii i fiziologii,
W K Yeh, and L N Ornston
July 2019, The Journal of veterinary medical science,
W K Yeh, and L N Ornston
July 2019, The Journal of veterinary medical science,
W K Yeh, and L N Ornston
June 2019, Molecules (Basel, Switzerland),
W K Yeh, and L N Ornston
March 1994, Nucleic acids research,
Copied contents to your clipboard!