Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. 1980

N Vasantha, and E Freese

When sporulation is initiated by nutrient limitation, e.g., at the end of growth, certain biochemical processes occur in sequence. To determine which of these processes occur, even when the cells sporulate in the presence of a rapidly metabolizable carbon source, we induced sporulation of Bacillus subtilis by deprivation of guanine nucleotides, in a synthetic medium containing excess glucose, ammonium ions, and phosphate. The deprivation was produced either by decoyinine addition to a standard strain or by guanosin limitation of a guanine auxotroph. At 1 h after the onset of this deprivation, an extensive turnover of proteins began whose appearance was chloramphenicol sensitive. At least one enzyme (aspartate transcarbamylase) lost 70% of its activity within 15 min, indicating its rapid destruction. Whereas the magnitude of the above two changes was similar to that observed during sporulation at the end of growth in nutrient sporulation medium, protease (intracellular and extracellular) increased to less than one-tenth of the specific activity in nutrient sporulation medium, and alkaline phosphatase increased to less than one-half. However, glucose dehydrogenase, an enzyme made only in forespores, increased to the same specific activity under both conditions, presumably because the forespore compartment is protected from media (e.g., glucose) influences by the double membrane (two bilayers with opposite polarity).

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002237 Carbohydrate Dehydrogenases Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99. Carbohydrate Oxidoreductases,Dehydrogenases, Carbohydrate,Oxidoreductases, Carbohydrate
D005948 Glucose Dehydrogenases D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10. Glucose Oxidoreductases,Dehydrogenases, Glucose,Oxidoreductases, Glucose
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D001221 Aspartate Carbamoyltransferase An enzyme that catalyzes the conversion of carbamoyl phosphate and L-aspartate to yield orthophosphate and N-carbamoyl-L-aspartate. (From Enzyme Nomenclature, 1992) EC 2.1.3.2. Aspartate Transcarbamylase,Co(II)-Aspartate Transcarbamoylase,Ni(II)-Aspartate Transcarbamoylase,Carbamoyltransferase, Aspartate,Transcarbamylase, Aspartate
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

N Vasantha, and E Freese
October 1979, Biochimica et biophysica acta,
N Vasantha, and E Freese
October 1968, The Biochemical journal,
N Vasantha, and E Freese
October 1968, The Biochemical journal,
N Vasantha, and E Freese
October 1968, The Biochemical journal,
N Vasantha, and E Freese
March 1983, Journal of bacteriology,
N Vasantha, and E Freese
March 1984, European journal of biochemistry,
N Vasantha, and E Freese
February 2014, Microbiology spectrum,
N Vasantha, and E Freese
May 2013, Molecular microbiology,
N Vasantha, and E Freese
October 1979, Archives of microbiology,
Copied contents to your clipboard!