Interaction of vasopressin and prostaglandins in the toad urinary bladder. 1980

J E Bisordi, and D Schlondorff, and R M Hays

Prostaglandins are important modulators of the action of vasopressin. Others researchers have proposed that vasopressin stimulates prostaglandin synthesis, completing a negative feedback loop and thereby limiting vasopressin's antidiuretic effect. We have re-examined this question, using specific radioimmunoassay and thin-layer radiochromatography to determine prostaglandin synthesis by the toad bladder. Under control conditions, the bladder synthesizes prostaglandin (PG)E2 and thromboxane (TX)B2. There was no evidence for synthesis of PGE1 or PGF2 alpha by radioimmunoassay, or of other prostaglandins by radiochromatography. Furthermore, there was no evidence for metabolism of PGE2 by the bladder. Using a variety of protocols, in isolated epithelial cells as well as intact bladders, we were unable to detect any significant increase in PGE2 or TXB2 synthesis after stimulation with arginine vasopressin (AVP) or deamino-8-D-arginine vasopressin (DDAVP). Arachidonic acid, the specific precursor of prostaglandin synthesis, increased PGE2 synthesis twofold, and significantly inhibited AVP- and DDAVP-stimulated water flow by 60 and 75%, respectively. Naproxen and acetaminophen inhibited prostaglandin synthesis and enhanced water flow in response to AVP and DDAVP (44-54%). Our findings indicate that the toad bladder produces tow prostaglandins, PGE2 and TXB2, and that vasopressin does not alter their rate of synthesis. Because agents such as acetaminophen and naproxen inhibit prostaglandin synthesis and enhance vasopressin- and DDAVP-stimulated water flow, we suggest that it is the inhibitory effect of these agents on the hormone-independent rate of prostaglandin synthesis that is responsible for their enhancement of water flow. Furthermore, because AVP appears to increase prostaglandin synthesis by the intact kidney, we suggest that cells other than those of the collecting tubule are responsible for the increased prostaglandin production.

UI MeSH Term Description Entries
D009288 Naproxen An anti-inflammatory agent with analgesic and antipyretic properties. Both the acid and its sodium salt are used in the treatment of rheumatoid arthritis and other rheumatic or musculoskeletal disorders, dysmenorrhea, and acute gout. Aleve,Anaprox,Methoxypropiocin,Naprosin,Naprosyn,Naproxen Sodium,Proxen,Sodium Naproxenate,Synflex,Naproxenate, Sodium,Sodium, Naproxen
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D003894 Deamino Arginine Vasopressin A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR. Desmopressin,Vasopressin, Deamino Arginine,1-Deamino-8-D-arginine Vasopressin,1-Desamino-8-arginine Vasopressin,Adiuretin,Adiuretin SD,Apo-Desmopressin,DDAVP,Desmogalen,Desmopressin Acetate,Desmopressin Monoacetate,Desmopressin Monoacetate, Trihydrate,Desmopressine Ferring,Desmospray,Desmotabs,Minirin,Minurin,Nocutil,Octim,Octostim,Acetate, Desmopressin,Arginine Vasopressin, Deamino,Ferring, Desmopressine,Monoacetate, Desmopressin,Monoacetate, Trihydrate Desmopressin,Trihydrate Desmopressin Monoacetate,Vasopressin, 1-Deamino-8-D-arginine,Vasopressin, 1-Desamino-8-arginine
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

J E Bisordi, and D Schlondorff, and R M Hays
March 1985, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
December 1981, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
January 1985, Regulatory peptides. Supplement,
J E Bisordi, and D Schlondorff, and R M Hays
June 1981, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
July 1994, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
June 1987, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
September 1982, The American journal of physiology,
J E Bisordi, and D Schlondorff, and R M Hays
May 1974, The Journal of cell biology,
J E Bisordi, and D Schlondorff, and R M Hays
August 1985, The Journal of pharmacology and experimental therapeutics,
J E Bisordi, and D Schlondorff, and R M Hays
December 1979, Kidney international,
Copied contents to your clipboard!