Cerebral carbohydrate and energy metabolism during hypoglycemia in newborn dogs. 1981

R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell

The metabolic responses of the perinatal brain to hypoglycemia were studied in newborn dogs. Hypoglycemia, induced by the intravenous injection of regular insulin (0.2-0.3 U/g body wt), resulted in final blood glucose concentrations ranging from 0.1 to 1.5 mmol/l; blood lactate levels were little changed from normoglycemic values. Righting, sucking, and nociceptive withdrawal reflexes were progressively lost during the course of hypoglycemia. Slowing of the electroencephalogram was apparent at or below 1.5 mmol/l blood glucose and advanced to paroxysmal discharges and convulsive activity as glucose approached 0.5 mmol/l. In lightly anesthetized, paralyzed, and artificially ventilated puppies, blood glucose concentrations approximating 1.0 mmol/l were associated with a 91% reduction in cerebral glucose; the concentrations of other glycolytic intermediates (glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, pyruvate, lactate) were unchanged from control. Further declines in blood glucose resulted in cerebral glucose levels below 0.1 mmol/kg as well as in partial depletions of all measured glycolytic intermediates including lactate. These changes reflect reduced cerebral glucose consumption and glycolytic flux. Despite the alterations in carbohydrate metabolism, both lactate/pyruvate ratios and high-energy phosphate reserves (phosphocreatine, ATP, ADP) in brain were well preserved even at the extreme of hypoglycemia. The present data, coupled with previous findings of enhanced lactic acid entry into and consumption by newborn dog brain, suggest that this metabolite serves as an important, if not the predominant, substitute fuel for cerebral oxidative metabolism during perinatal hypoglycemia.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
July 1978, Annals of neurology,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
September 1980, Journal of neurochemistry,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
March 1969, Zeitschrift fur klinische Chemie und klinische Biochemie,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
June 1977, Annals of neurology,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
June 1989, The American journal of physiology,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
January 1983, Journal of pediatric gastroenterology and nutrition,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
July 1988, Pediatric research,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
July 1987, Journal of neurochemistry,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
November 1992, Pediatric research,
R C Vannucci, and E E Nardis, and S J Vannucci, and P A Campbell
April 1967, Pediatrics,
Copied contents to your clipboard!