Purification and characterization of two components of botulinum C2 toxin. 1980

I Ohishi, and M Iwasaki, and G Sakaguchi

Two dissimilar proteins, designated as components I and II, of botulinum C2 toxin elaborated by strain 92-13 were purified to a homogeneous state. The molecular weights determined by sodium dodecyl sulfate gel electrophoresis were 55,000 for component I and 105,000 for component II. Whereas each component showed no or feeble toxicity even after being treated with trypsin, the toxicity was elicited when these two components were mixed and trypsinized. The toxicity of the mixture of components I and II at a ratio of 1:2.5 on a protein basis was 2.2 X 10(4) mouse intraperitoneal 50% lethal doses per mg of protein and increased by 2,000 times or more when treated with trypsin. These results indicate that the molecular characteristics of botulinum C2 toxin differ from those of the toxin of Clostridium botulinum types A through F in that C2 toxin is constructed with two separate protein components, which are not covalently held together, and that its toxicity is elicited by cooperation of the two components.

UI MeSH Term Description Entries
D007928 Lethal Dose 50 The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population. LD50,Dose 50, Lethal
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001905 Botulinum Toxins Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS. Botulin,Botulinum Neurotoxin,Botulinum Neurotoxins,Clostridium botulinum Toxins,Botulinum Toxin,Neurotoxin, Botulinum,Neurotoxins, Botulinum,Toxin, Botulinum,Toxins, Botulinum,Toxins, Clostridium botulinum
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003014 Clostridium botulinum A species of anaerobic, gram-positive, rod-shaped bacteria in the family Clostridiaceae that produces proteins with characteristic neurotoxicity. It is the etiologic agent of BOTULISM in humans, wild fowl, HORSES; and CATTLE. Seven subtypes (sometimes called antigenic types, or strains) exist, each producing a different botulinum toxin (BOTULINUM TOXINS). The organism and its spores are widely distributed in nature.
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

I Ohishi, and M Iwasaki, and G Sakaguchi
January 1992, Microbiology and immunology,
I Ohishi, and M Iwasaki, and G Sakaguchi
January 1986, Journal of general microbiology,
I Ohishi, and M Iwasaki, and G Sakaguchi
January 1986, Nature,
I Ohishi, and M Iwasaki, and G Sakaguchi
April 1978, Japanese journal of medical science & biology,
I Ohishi, and M Iwasaki, and G Sakaguchi
May 2014, Toxicon : official journal of the International Society on Toxinology,
I Ohishi, and M Iwasaki, and G Sakaguchi
June 1987, Infection and immunity,
I Ohishi, and M Iwasaki, and G Sakaguchi
May 1990, Biochimica et biophysica acta,
I Ohishi, and M Iwasaki, and G Sakaguchi
November 2009, Infection and immunity,
Copied contents to your clipboard!