Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: trigger analyses. 1980

H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson

A variety of trigger procedures were applied to analyse the exocytotic capability of different Paramecium tetraurelia strains. 7,S K 40I, kin 24I, and 9 (18 degrees C) are capable of exocytosis (permissive strains), in contrast to nd 6, nd 7, nd 9 (27 degrees C), tam 38 and ftb A, although all procedures used enhance [Ca2+]i in the cytoplasm of all strains tested and although strains nd 6, nd 7 and nd 9 (27 degrees C) contain a full set of morphologically normal trichocysts attended to the cell membrane. The results show that only those strains are permissive which were shown previously to contain a rosette of membrane-integrated particles and a Ca2+-ATPase activity in the cell membrane over the trichocyst attachment (exocytosis) sites. The results from trigger experiments with permissive and non-permissive strains would be compatible with a dual function of rosette particles as Ca2+ pumps and Ca2+ channels. Nevertheless, the latter aspect remains uncertain since we show that experiments along these lines published by others (introducing a Ca2+ ionophore from the outside) involve a solvent-induced artifact (pseudoexocytosis: matrix stretching in the absence of membrane fusion). In all strains, except for tam 38 and ftb A (which have abnormal trichocysts incapable of being attached to the cell membrane), the isolated trichocyst matrix can be transferred from the contracted to the expanded state in vitro with certain trigger procedures. Our data clearly show that an increase of [Ca2+]i in the cytoplasm is not sufficient for exocytosis to occur and that non-permissiveness is somehow due to an inability to perform membrane fusion. It remains open whether the lack of rosettes and Ca2+-ATPase activity at trichocyst attachment sites are primary cause of non-permissiveness.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010247 Paramecium A genus of ciliate protozoa that is often large enough to be seen by the naked eye. Paramecia are commonly used in genetic, cytological, and other research. Parameciums
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
May 1977, Genetics,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
May 2013, Protist,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
November 1982, FEBS letters,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
May 1993, Genetics,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
January 1994, Advances in second messenger and phosphoprotein research,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
December 1977, Genetics,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
July 1996, The Biochemical journal,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
December 2005, Eukaryotic cell,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
June 1988, Journal of general microbiology,
H Matt, and H Plattner, and K Reichel, and M Lefort-Tran, and J Beisson
May 1982, Experimental cell research,
Copied contents to your clipboard!