Photodynamic effects of protoporphyrin on human erythrocytes. Nature of the cross-linking of membrane proteins. 1978

T M Dubbelman, and A F de Goeij, and J van Steveninck

Protoporphyrin-sensitized photooxidation in human red blood cell membranes leads to severe deterioration of membrane structure and function. The membrane damage is caused by direct oxidation of amino acid residues, with subsequent cross-linking of membrane proteins. The chemical nature of these cross-links was studied in model systems, isolated spectrin and red cell ghosts. Cysteine and methionine are not involved in the cross-linking reaction. Further it could be shown that dityrosine formation, the crucial mechanism in oxidative cross-linking of proteins by peroxidase-H2O2 treatment, plays no role in photodynamic cross-linking. Experimental evidence indicated that a secondary reaction between free amino groups and a photooxidation product of histidine, tyrosine or tryptophan is involved in photodynamic cross-linking. This was deduced from the reaction observed between compounds containing a free amino group and photooxidation products of these amino acids, both in model systems, isolated spectrin and erythrocyte ghosts. In accordance, succinylation of free amino groups of membrane proteins or addition of compounds with free amino groups protected against cross-linking. Quantitative data and consideration of the reaction mechanisms of photodynamic oxidation of amino acids make it highly probable that an oxidation product of histidine rather than of tyrosine or tryptophan is involved in the cross-linking reaction, via a nucleophilic addition by free amino groups.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011166 Porphyrins A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin. Porphyrin
D011524 Protoporphyrins Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

T M Dubbelman, and A F de Goeij, and J van Steveninck
October 1976, Biochemical and biophysical research communications,
T M Dubbelman, and A F de Goeij, and J van Steveninck
June 1980, Photochemistry and photobiology,
T M Dubbelman, and A F de Goeij, and J van Steveninck
April 1994, Journal of biochemistry,
T M Dubbelman, and A F de Goeij, and J van Steveninck
January 1978, Progress in clinical and biological research,
T M Dubbelman, and A F de Goeij, and J van Steveninck
June 1978, Biochemistry,
T M Dubbelman, and A F de Goeij, and J van Steveninck
December 1990, Journal of biochemistry,
T M Dubbelman, and A F de Goeij, and J van Steveninck
November 1979, British journal of haematology,
T M Dubbelman, and A F de Goeij, and J van Steveninck
August 1975, The Journal of biological chemistry,
T M Dubbelman, and A F de Goeij, and J van Steveninck
January 1985, Biochimica et biophysica acta,
Copied contents to your clipboard!