Monoclonal antibodies as probes of acetylcholine receptor structure. 1. Peptide mapping. 1981

W J Gullick, and S Tzartos, and J Lindstrom

The isolated subunits of the acetylocholine receptor from Torpedo californica were digested with proteolytic enzymes, and the resulting polypeptide fragments were analyzed by gel electrophoresis. We have identified those fragments which contain carbohydrate and those from the alpha subunit which are labelled with the acetylcholine binding site specific reagent [4-(N-maleimido)benzyl]tri[3H]methylammonium iodide. We have tested several monoclonal antibodies raised to the acetylcholine receptor from torpedo, some of which react with the denatured subunits [Tzartos, S.J., & Lindstrom, J.M. (1980) Proc. Natl. Acad. Sci. U.S.A.77, 755; Tzartos, S.J., & Lindstrom, J.M. (1981) in Monoclonal antibodies in Endocrine Research (Fellows, R., & Eisenbarth, G., Eds.) Raven Press (in press)]. The binding specificities of these antibodies to radioiodinated proteolytically generated fragments of the alpha subunit were determined by immunoprecipitation followed by gel electrophoresis. The antibodies tested fell into at least three main groups on the basis of their binding specificities. These antibodies were also tested for their capacity to bind to acetylcholine receptor solubilized in Triton X-100, sodium cholate, or sodium cholate supplemented with exogenous lipids. A monoclonal antibody raised to the denatured delta subunit, was tested for its ability to select radioiodinated proteolytic fragments of these subunits. These molecules provide probes for many sites on the acetylcholine receptor with affinities and specificities comparable to alpha-neurotoxins.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

W J Gullick, and S Tzartos, and J Lindstrom
April 1981, Biochemistry,
W J Gullick, and S Tzartos, and J Lindstrom
January 1988, Journal of receptor research,
W J Gullick, and S Tzartos, and J Lindstrom
September 1984, European journal of biochemistry,
W J Gullick, and S Tzartos, and J Lindstrom
January 1988, Journal of receptor research,
W J Gullick, and S Tzartos, and J Lindstrom
January 1986, Horizons in biochemistry and biophysics,
W J Gullick, and S Tzartos, and J Lindstrom
July 1984, Federation proceedings,
W J Gullick, and S Tzartos, and J Lindstrom
August 1981, The Journal of biological chemistry,
W J Gullick, and S Tzartos, and J Lindstrom
April 1987, The Journal of biological chemistry,
W J Gullick, and S Tzartos, and J Lindstrom
January 1981, Progress in clinical and biological research,
Copied contents to your clipboard!