Recombinant plasmid associated cell aggregation and high-frequency conjugation of Streptococcus lactis ML3. 1981

P M Walsh, and L L McKay

Lactose-positive (Lac+) transconjugants resulting from matings between Streptococcus lactic ML3 and S. lactis LM2301 possess a single plasmid of approximately 60 megadaltons (Mdal) which is nearly twice the size of the lactose plasmid of the donor. The majority of these Lac+ transconjugants aggregated in broth and were able to transfer lactose-fermenting ability at a frequency higher than 10(-1) per donor on milk agar plates or in broth. Lac+ transconjugants which did not clump conjugated at a much lower frequency. Lactose-negative derivatives of Lac+ clumping transconjugants did not aggregate in broth and were missing the 60-Mdal plasmid. The ability to aggregates in broth was very unstable. Strains could lose the ability to clump but retain lactose-fermenting ability. The majority of these Lac+ nonclumping derivatives of clumping transconjugants contained a plasmid of approximately 33 Mdal, the size of the lactose plasmid of the original donor ML3. These strains transferred lactose-fermenting ability at a frequency of approximately 10(-6) per donor, resulting in both Lac+ clumping transconjugants which contained a 60-Mdal plasmid and Lac+ nonclumping transconjugants which possessed a 33-Mdal plasmid. Our results suggest that the genes responsible for cell aggregation and high-frequency conjugation are on the segment of deoxyribonucleic acid which recombined with the 33-Mdal lactose plasmid in S. lactis ML3.

UI MeSH Term Description Entries
D007786 Lactose Factors Plasmids which determine the ability of a bacterium to ferment lactose. Lac Factors,Factors, Lac,Factors, Lactose
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D013294 Lactococcus lactis A non-pathogenic species of LACTOCOCCUS found in DAIRY PRODUCTS and responsible for the souring of MILK and the production of LACTIC ACID. Streptococcus lactis,Lactococcus lactis subsp. lactis

Related Publications

P M Walsh, and L L McKay
September 1980, Journal of bacteriology,
P M Walsh, and L L McKay
August 1983, Journal of bacteriology,
P M Walsh, and L L McKay
February 1984, Applied and environmental microbiology,
P M Walsh, and L L McKay
July 1984, Applied and environmental microbiology,
P M Walsh, and L L McKay
January 1995, Developments in biological standardization,
P M Walsh, and L L McKay
August 1986, Applied and environmental microbiology,
Copied contents to your clipboard!